VincentGOURBIN's picture
Update README.md
cabc749 verified
---
license: apache-2.0
base_model:
- mistralai/Voxtral-Small-24B-2507
tags:
- mistral
- quantized
- 4bit
- llm
- language-model
- transformers
- mlx
---
# VincentGOURBIN/voxtral-small-4bit-mixed
This is a 4-bit quantized version of the [mistralai/Voxtral-Small-24B-2507](https://huggingface.co/mistralai/Voxtral-Small-24B-2507) language model.
It is provided in standard Hugging Face Transformers format and compatible with [mlx.voxtral](https://github.com/mzbac/mlx.voxtral).
## πŸ”§ About this model
- **Base model**: [`mistralai/Voxtral-Small-24B-2507`](https://huggingface.co/mistralai/Voxtral-Small-24B-2507)
- **Quantization**: 4-bit mixed precision
- **Format**: Transformers-compatible (safetensors), usable with MLX and Hugging Face
## πŸ™ Acknowledgments
Huge thanks to:
- **[Mistral AI](https://mistral.ai/)** for releasing the original Voxtral-Small model
- **[mlx-voxtral](https://github.com/mzbac/mlx.voxtral)** for the quantization tooling and MLX support
This work is a quantized derivative of [mistralai/Voxtral-Small-24B-2507](https://huggingface.co/mistralai/Voxtral-Small-24B-2507), made easier by the amazing work of the `voxtral` project.
## πŸš€ Usage
### πŸ€— With Hugging Face Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "VincentGOURBIN/voxtral-small-4bit-mixed"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
prompt = "What is the capital of France?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))