metadata
library_name: transformers
license: apache-2.0
base_model: google/siglip2-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: siglip2-finetuned-marathi-sign-language
results: []
datasets:
- VinayHajare/Marathi-Sign-Language
language:
- mr
pipeline_tag: image-classification
siglip2-finetuned-marathi-sign-language
This model is a fine-tuned version of google/siglip2-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0006
- Model Preparation Time: 0.0057
- Accuracy: 0.9997
Model description
Marathi-Sign-Language-Detection is a vision-language model fine-tuned from google/siglip2-base-patch16-224 for multi-class image classification. It is trained to recognize Marathi sign language hand gestures and map them to corresponding Devanagari characters using the SiglipForImageClassification architecture.
Training and evaluation data
Classification Report:
precision recall f1-score support
अ 1.0000 1.0000 1.0000 404
आ 1.0000 1.0000 1.0000 409
इ 1.0000 1.0000 1.0000 440
ई 0.9866 1.0000 0.9932 441
उ 1.0000 1.0000 1.0000 479
ऊ 1.0000 1.0000 1.0000 428
ए 1.0000 1.0000 1.0000 457
ऐ 1.0000 1.0000 1.0000 436
ओ 1.0000 1.0000 1.0000 430
औ 1.0000 1.0000 1.0000 408
क 1.0000 1.0000 1.0000 433
क्ष 1.0000 1.0000 1.0000 480
ख 1.0000 1.0000 1.0000 456
ग 1.0000 1.0000 1.0000 444
घ 1.0000 1.0000 1.0000 480
च 1.0000 1.0000 1.0000 463
छ 1.0000 1.0000 1.0000 468
ज 1.0000 1.0000 1.0000 480
ज्ञ 1.0000 1.0000 1.0000 480
झ 1.0000 1.0000 1.0000 480
ट 1.0000 1.0000 1.0000 480
ठ 1.0000 1.0000 1.0000 480
ड 1.0000 1.0000 1.0000 480
ढ 1.0000 1.0000 1.0000 480
ण 1.0000 1.0000 1.0000 480
त 1.0000 1.0000 1.0000 480
थ 1.0000 1.0000 1.0000 480
द 1.0000 0.9875 0.9937 480
ध 1.0000 1.0000 1.0000 480
न 1.0000 1.0000 1.0000 480
प 1.0000 1.0000 1.0000 480
फ 1.0000 1.0000 1.0000 480
ब 1.0000 1.0000 1.0000 480
भ 1.0000 1.0000 1.0000 480
म 1.0000 1.0000 1.0000 480
य 1.0000 1.0000 1.0000 480
र 1.0000 1.0000 1.0000 484
ल 1.0000 1.0000 1.0000 480
ळ 1.0000 1.0000 1.0000 480
व 1.0000 1.0000 1.0000 480
श 1.0000 1.0000 1.0000 480
स 1.0000 1.0000 1.0000 480
ह 1.0000 1.0000 1.0000 480
accuracy 0.9997 20040
macro avg 0.9997 0.9997 0.9997 20040
weighted avg 0.9997 0.9997 0.9997 20040
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy |
---|---|---|---|---|---|
1.4439 | 1.0 | 940 | 0.0090 | 0.0057 | 0.9980 |
0.0052 | 2.0 | 1880 | 0.0035 | 0.0057 | 0.9993 |
0.0031 | 3.0 | 2820 | 0.0016 | 0.0057 | 0.9997 |
0.001 | 4.0 | 3760 | 0.0010 | 0.0057 | 0.9997 |
0.0007 | 5.0 | 4700 | 0.0013 | 0.0057 | 0.9997 |
0.0005 | 6.0 | 5640 | 0.0006 | 0.0057 | 0.9997 |
Framework versions
- Transformers 4.52.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1