metadata
library_name: mlx
model_name: QVikhr-3-4B-Instruction
base_model: Vikhrmodels/QVikhr-3-4B-Instruction
language:
- ru
- en
license: apache-2.0
datasets:
- Vikhrmodels/GrandMaster2
tags:
- mlx
pipeline_tag: text-generation
Vikhrmodels/QVikhr-3-4B-Instruction-MLX_8bit
This model Vikhrmodels/QVikhr-3-4B-Instruction-MLX_8bit was converted to MLX format from Vikhrmodels/QVikhr-3-4B-Instruction using mlx-lm version 0.25.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Vikhrmodels/QVikhr-3-4B-Instruction-MLX_8bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)