Edit model card

pegasus-samsum

This model is a fine-tuned version of google/pegasus-large on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4091
  • Rouge1: 0.4659
  • Rouge2: 0.2345
  • Rougel: 0.3946
  • Rougelsum: 0.3951
  • Gen Len: 17.7467

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.8025 0.27 500 1.4403 0.4466 0.2101 0.3832 0.3841 21.64
1.5936 0.54 1000 1.3766 0.4786 0.2374 0.4017 0.4013 21.24
1.5926 0.81 1500 1.3910 0.5118 0.2643 0.4282 0.4286 20.2267
1.5067 1.09 2000 1.4028 0.4982 0.261 0.4155 0.4157 20.4267
1.5712 1.36 2500 1.4236 0.4712 0.234 0.3964 0.3969 17.0
1.6177 1.63 3000 1.4151 0.4768 0.2382 0.4019 0.4022 16.28
1.6289 1.9 3500 1.4112 0.4744 0.2346 0.402 0.4033 17.0267
1.6326 2.17 4000 1.4096 0.4682 0.234 0.3985 0.3994 17.1333
1.5929 2.44 4500 1.4093 0.4637 0.2342 0.3939 0.3942 17.16
1.4351 2.72 5000 1.4090 0.4684 0.2346 0.3953 0.3955 17.8133
1.6445 2.99 5500 1.4091 0.4659 0.2345 0.3946 0.3951 17.7467

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Venkatesh4342/pegasus-samsum

Finetuned
(54)
this model

Dataset used to train Venkatesh4342/pegasus-samsum

Evaluation results