norallm_normistral-7b-warm-instruct_4bit_quant

This model is a fine-tuned version of norallm/normistral-7b-warm-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0707

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.7 0.1954 100 0.5815
0.371 0.3907 200 0.3392
0.2114 0.5861 300 0.2257
0.1371 0.7814 400 0.1624
0.1141 0.9768 500 0.1242
0.0852 1.1719 600 0.1016
0.0756 1.3673 700 0.0852
0.0586 1.5626 800 0.0758
0.0525 1.7580 900 0.0707

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.0+cu118
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Veggissss/norallm_normistral-7b-warm-instruct_4bit_quant

Adapter
(1)
this model

Collection including Veggissss/norallm_normistral-7b-warm-instruct_4bit_quant