RADMADmobilebert_distilled
This model is a fine-tuned version of google/mobilebert-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.5666
- Accuracy: 0.9042
- Precision: 0.8800
- Recall: 0.8695
- F1 Score: 0.8747
- Mcc: 0.7972
- Roc Auc: 0.9502
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | Mcc | Roc Auc |
---|---|---|---|---|---|---|---|---|---|
1.5618 | 1.0 | 735 | 1.0758 | 0.9093 | 0.9252 | 0.8315 | 0.8758 | 0.8076 | 0.9616 |
3.3657 | 2.0 | 1470 | 1.0866 | 0.9079 | 0.8672 | 0.8983 | 0.8825 | 0.8072 | 0.9615 |
1.053 | 3.0 | 2205 | 1.2342 | 0.9049 | 0.8525 | 0.9102 | 0.8804 | 0.8028 | 0.9600 |
0.6546 | 4.0 | 2940 | 1.1842 | 0.9091 | 0.8654 | 0.9045 | 0.8845 | 0.8102 | 0.9598 |
0.4877 | 5.0 | 3675 | 2.0862 | 0.9084 | 0.8705 | 0.8952 | 0.8827 | 0.8078 | 0.9557 |
0.4582 | 6.0 | 4410 | 1.2735 | 0.9054 | 0.8831 | 0.8691 | 0.8761 | 0.7996 | 0.9551 |
0.3444 | 7.0 | 5145 | 3.5666 | 0.9042 | 0.8800 | 0.8695 | 0.8747 | 0.7972 | 0.9502 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Vandita/RADMADmobBERT
Base model
google/mobilebert-uncased