image/jpeg

Fireplace 2 is a chat model, adding helpful structured outputs to Llama 3.1 8b Instruct.

  • an expansion pack of supplementary outputs - request them at will within your chat:
    • Inline function calls
    • SQL queries
    • JSON objects
    • Data visualization with matplotlib
  • Mix normal chat and structured outputs within the same conversation.
  • Fireplace 2 supplements the existing strengths of Llama 3.1, providing inline capabilities within the Llama 3 Instruct format.

Version

This is the 2024-07-23 release of Fireplace 2 for Llama 3.1 8b.

We're excited to bring further upgrades and releases to Fireplace 2 in the future.

Help us and recommend Fireplace 2 to your friends!

Prompting Guide

Fireplace uses the Llama 3.1 Instruct prompt format. The example script below can be used as a starting point for general chat with Llama 3.1 and also includes the different special tokens used for Fireplace 2's added features:

import transformers import torch

model_id = "ValiantLabs/Llama3.1-8B-Fireplace2"

pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", )

messages = [ {"role": "system", "content": "You are Fireplace, an expert technical assistant."}, {"role": "user", "content": "Hi, can you explain local area networking to me?"}, #general Llama 3.1 chat #{"role": "user", "content": "I have the following SQL table: employees (job_id VARCHAR, salary INTEGER)\n\nCan you find all employees with a salary above $75000?<|request_sql|>"}, #for SQL query #{"role": "user", "content": "{""name"": ""get_news_headlines"",""description"": ""Get the latest news headlines"",""parameters"": {""type"": ""object"",""properties"": {""country"": {""type"": ""string"",""description"": ""The country for which news headlines are to be retrieved""}},""required"": [""country""]}}\n\nHi, can you get me the latest news headlines for the United States?<|request_function_call|>"}, # for function call #{"role": "user", "content": "Show me an example of a histogram with a fixed bin size. Use attractive colors.<|request_matplotlib|>"}, #for data visualization #{"role": "user", "content": "Can you define the word 'presence' for me, thanks!<|request_json|>"}, #for JSON output ]

outputs = pipeline( messages, max_new_tokens=512, ) print(outputs[0]["generated_text"][-1])

While Fireplace 2 is trained to minimize incorrect structured outputs, they can still occur occasionally. Production uses of Fireplace 2 should verify the structure of all model outputs and remove any unneeded components of the output.

For handling of function call responses, use the Llama 3.1 Instruct tool response style.

Special Tokens

Fireplace 2 utilizes special tokens applied to the Llama 3.1 tokenizer:

  • <|request_json|>
  • <|start_json|>
  • <|end_json|>
  • <|request_sql|>
  • <|start_sql|>
  • <|end_sql|>
  • <|request_matplotlib|>
  • <|start_matplotlib|>
  • <|end_matplotlib|>
  • <|request_function_call|>
  • <|start_function_call|>
  • <|end_function_call|>

These are supplemental to the existing special tokens used by Llama 3.1, such as <|python_tag|> and <|start_header_id|>. Fireplace 2 has been trained using the Llama 3.1 Instruct chat structure, with new special tokens added within the conversation.

The 'request' tokens are used by the user to request a specific type of structured output. They should be appended to the end of the user's message and can be alternated with normal chat responses throughout the conversation.

The Model

Fireplace 2 is built on top of Llama 3.1 8b Instruct.

This version of Fireplace 2 uses data from the following datasets:

Additional capabilities will be added to future releases.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 18.31
IFEval (0-Shot) 54.83
BBH (3-Shot) 24.07
MATH Lvl 5 (4-Shot) 5.82
GPQA (0-shot) 5.15
MuSR (0-shot) 4.38
MMLU-PRO (5-shot) 15.63

image/jpeg

Fireplace 2 is created by Valiant Labs.

Check out our HuggingFace page for Shining Valiant 2 and our other models!

We care about open source. For everyone to use.

We encourage others to finetune further from our models.

Downloads last month
1,797
Safetensors
Model size
8.03B params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for ValiantLabs/Llama3.1-8B-Fireplace2

Finetuned
(759)
this model
Merges
1 model
Quantizations
3 models

Space using ValiantLabs/Llama3.1-8B-Fireplace2 1

Collection including ValiantLabs/Llama3.1-8B-Fireplace2

Evaluation results