phobert-sentiment-analysis
This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1279
- Accuracy: 0.9768
- F1 Positive: 0.9845
- F1 Neutral: 0.9723
- F1 Negative: 0.9738
- Macro F1: 0.9768
- Macro Precision: 0.9768
- Macro Recall: 0.9769
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Positive | F1 Neutral | F1 Negative | Macro F1 | Macro Precision | Macro Recall |
---|---|---|---|---|---|---|---|---|---|---|
0.1902 | 1.0 | 1965 | 0.1841 | 0.9442 | 0.9573 | 0.9384 | 0.9365 | 0.9441 | 0.9434 | 0.9455 |
0.0958 | 2.0 | 3930 | 0.1998 | 0.9526 | 0.9633 | 0.9421 | 0.9526 | 0.9527 | 0.9526 | 0.9547 |
0.0925 | 3.0 | 5895 | 0.1155 | 0.9707 | 0.9777 | 0.9652 | 0.9696 | 0.9708 | 0.9706 | 0.9711 |
0.0219 | 4.0 | 7860 | 0.1154 | 0.9768 | 0.9818 | 0.9724 | 0.9767 | 0.9770 | 0.9770 | 0.9769 |
0.0079 | 5.0 | 9825 | 0.1279 | 0.9768 | 0.9845 | 0.9723 | 0.9738 | 0.9768 | 0.9768 | 0.9769 |
Framework versions
- Transformers 4.54.1
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 26
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for VTKK/phobert-sentiment-analysis
Base model
vinai/phobert-base-v2