GGUF
conversational

Quantitative Analysis of Performance Drop in DeepSeek Model Quantization

Enbo Zhao1,2, Yi Shen1,2, Shuming Shi1,2, Jieyun Huang1,2, Zhihao Chen1,2, Ning Wang1,2, Siqi Xiao1,2, Jian Zhang1,2, Kai Wang1,2, Shiguo Lian1,2

1 Unicom Data Intelligence, China Unicom
2 Data Science & Artificial Intelligence Research Institute, China Unicom

Paper Link

Abstract

Recently, there is a high demand for deploying DeepSeek-R1 and V3 locally, possibly because the official service often suffers from being busy and some organizations have data privacy concerns. While single-machine deployment offers infrastructure simplicity, the models’ 671B FP8 parameter configuration exceeds the practical memory limits of standard 8-GPU devices (A100/H100/910B). Quantization is a widely used technique that helps reduce model memory consumption. However, it is unclear what the performance of DeepSeek-R1 and V3 will be after being quantized. This technical report presents the first comprehensive evaluation of multibitwidth quantization across the complete DeepSeek model spectrum. Key findings reveal that 4-bit quantization maintains little performance degradation versus FP8 while enabling single-machine deployment on standard Nvidia GPU devices. We further propose DQ3_K_M, a dynamic 3-bit quantization method that significantly outperforms traditional Q3_K_M variantion various benchmarks, which is also comparable with 4-bit quantization (Q4_K_M) approach in most tasks. Moreover, DQ3_K_M supports single-machine deployment configurations for both NVIDIA H100/A100 and Huawei 910B.

Experimental Results

Table 1: Resource usage of DQ3_K_M versus llama.cpp and Unsloth quantizations for DeepSeek R1 (671B) at a 32K‑token context length.

Metric Q4_K_M (llama.cpp) Q3_K_M (llama.cpp) DQ3_K_M (ours) Q2_K_L (llama.cpp) UD‑Q2_K_XL (Unsloth)
Model Size 377G 298G 281G 228G 212G
Avg Quants 4.82 3.81 3.59 2.91 2.70
Total Memory Usage 568 GB 487 GB 469 GB 415 GB 398 GB
Memory Usage per GPU 71 GB 61 GB 59 GB 52 GB 50 GB

Table 2: Quantization results of DeepSeek‑R1 on various benchmarks.

Benchmark DeepSeek‑R1 FP8 (Reported) FP8 (Official API) Q4_K_M (llama.cpp) Q3_K_M (llama.cpp) UD‑Q2_K_XL (Unsloth) DQ3_K_M (ours)
AIME 2024 79.8 77.53 (±2.97) 75.43 (±3.07) 72.50 (±6.11) 75.83 (±5.83) 75.41 (±4.69)
MATH 500 97.3 95.45 (±0.82) 95.55 (±0.44) 94.15 (±0.68) 95.25 (±0.44) 95.35 (±0.50)
GPQA 71.5 69.58 (±1.65) 69.95 (±1.85) 65.80 (±2.30) 68.93 (±1.55) 68.95 (±0.65)
MBPP - 92.60 (±0.80) 91.60 (±2.00) 90.43 (±0.88) 92.93 (±0.24) 92.80 (±0.70)
MBPP+ - 78.35 (±1.06) 76.70 (±1.85) 76.75 (±0.88) 78.33 (±0.91) 78.60 (±1.01)
LiveCodeBench 65.9 64.16 (±1.51) 62.41 (±2.27) 61.95 (±1.66) 61.40 (±1.59) 63.15 (±1.06)
MMLU 90.8 90.99 90.14 89.87 89.72 91.03
CMMLU - 90.37 90.42 89.85 89.61 90.17
C‑Eval 91.8 92.20 92.10 91.60 91.70 91.80
Average - 83.48 82.70 81.44 82.63 83.03
Weighted avg. - 85.82 85.24 84.28 85.02 85.53
Accuracy drop - - 0.68% 1.80% 0.94% 0.34%

Table 3: Quantization results of DeepSeek-V3 on various benchmarks.

Benchmark DeepSeek‑V3 FP8 (Reported) FP8 (Tencent API) Q4_K_M (llama.cpp) Q3_K_M (llama.cpp) Q2_K_L (llama.cpp) DQ3_K_M (ours)
AIME 2024 39.2 38.34 (±2.52) 41.66 (±4.72) 38.73 (±4.70) 15.41 (±3.55) 39.16 (±4.97)
MATH 500 90.2 89.85 (±0.30) 90.55 (±0.44) 89.05 (±1.27) 77.30 (±0.66) 89.65 (±0.98)
GPQA 59.1 52.23 (±3.44) 51.95 (±2.64) 52.13 (±1.25) 43.65 (±1.32) 52.38 (±1.31)
MBPP - 87.75 (±0.61) 87.18 (±0.70) 88.55 (±0.90) 81.10 (±1.55) 89.38 (±0.35)
MBPP+ - 73.35 (±1.21) 72.90 (±0.66) 73.08 (±1.31) 67.83 (±1.09) 74.78 (±0.56)
LiveCodeBench 36.2 36.21 (±0.47) 37.40 (±1.32) 36.21 (±2.03) 29.14 (±0.92) 36.76 (±0.67)
MMLU 88.5 88.06 88.09 87.31 84.25 87.87
CMMLU - 81.57 82.68 80.69 77.32 81.07
C‑Eval 86.5 83.10 82.90 82.60 77.60 83.40
Average - 70.05 70.59 69.82 61.51 70.47
Weighted avg. - 75.45 75.79 75.06 68.73 75.73
Accuracy drop - - 0 0.52% 8.91% 0

Table 4: Quantization results of DeepSeek-R1-distill-Qwen-32B on various benchmarks

Benchmark BF16 (Reported) BF16 (Local Evaluation) Q8_0 (llama.cpp) Q4_K_M (llama.cpp) Q3_K_M (llama.cpp)
AIME 2024 72.6 69.59 (±2.75) 71.68 (±4.71) 70.40 (±7.66) 71.24 (±6.66)
MATH 500 94.3 93.65 (±0.41) 93.10 (±0.42) 93.90 (±0.53) 93.50 (±0.38)
GPQA 62.1 61.85 (±2.18) 58.85 (±2.75) 62.00 (±4.54) 60.20 (±1.95)
LiveCodeBench 57.2 57.08 (±1.01) 57.59 (±1.17) 56.85 (±2.87) 55.20 (±1.74)
MBPP - 89.35 (±0.42) 89.35 (±0.73) 89.73 (±1.20) 88.93 (±0.64)
MBPP+ - 75.43 (±0.91) 75.45 (±1.18) 75.53 (±1.04) 75.38 (±1.30)
MMLU - 82.15 82.15 82.37 82.17
CMMLU - 83.91 83.97 83.57 83.34
C‑Eval - 87.0 86.7 86.8 86.2
Average - 77.78 77.65 77.91 77.35
Weighted avg. - 79.94 79.71 79.97 79.40
Accuracy drop - - 0.29% 0 0.68%
Downloads last month
67
GGUF
Model size
671B params
Architecture
deepseek2
Hardware compatibility
Log In to view the estimation

3-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for UnicomAI/DeepSeek-DQ3_K_M

Quantized
(55)
this model