Leesplank Wim
Collection
16 items
•
Updated
This model is a fine-tuned version of microsoft/Phi-4-mini-instruct optimized for entity extraction from Dutch text, trained as part of the WIM (Wikipedia to Knowledge Graph) pipeline.
{
"r": 512, # Rank
"lora_alpha": 1024, # Alpha (2:1 ratio)
"lora_dropout": 0.05, # Dropout
"bias": "none",
"task_type": "CAUSAL_LM",
"target_modules": [
"q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"
]
}
{
"model": "phi4-mini",
"max_seq_length": 16384,
"batch_size": 16,
"gradient_accumulation_steps": 1,
"effective_batch_size": 16,
"learning_rate": 2e-5,
"warmup_steps": 50,
"max_grad_norm": 1.0,
"lr_scheduler": "linear",
"optimizer": "paged_adamw_8bit",
"bf16": True,
"seed": 42
}
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import json
# Load the merged model (ready to use)
model = AutoModelForCausalLM.from_pretrained(
"UWV/wim-n1-phi4-mini-merged",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("UWV/wim-n1-phi4-mini-merged")
# Prepare input
text = """
De Schijfwereld is een fantasiewereld uit de boeken van Terry Pratchett. Het is een
platte planeet die op de ruggen van vier reusachtige olifanten rust: Berilia, Tubul,
Groothuis T'Phon en Jerakeen. Deze olifanten staan op hun beurt op de rug van de
Groot A'Tuin, een enorme schildpad die door de kosmos zwemt.
"""
messages = [
{
"role": "system",
"content": "Je bent een expert in het extraheren van entiteiten uit tekst."
},
{
"role": "user",
"content": f"""Analyseer de gegeven Nederlandse tekst en voer de volgende taken uit:
1. Geef eerst een beknopte samenvatting van waar de tekst over gaat (maximaal 2 zinnen).
2. Identificeer alle belangrijke entiteiten in de tekst. Voor elke entiteit:
- Gebruik de exacte naam zoals vermeld in de tekst
- Bepaal het meest specifieke type/class dat bij deze entiteit past
- Geef een korte beschrijving van wat dit type/class vertegenwoordigt
3. Identificeer de relaties tussen de gevonden entiteiten.
Hier zijn enkele voorbeelden van output van entiteiten en relaties. Het pijp-karakter (|) wordt gebruikt om velden te scheiden. BELANGRIJK: Zorg ervoor dat het TYPE/CLASS zowel SPECIFIEK als CORRECT is.
### Voorbeeld van entiteiten
<entiteiten>
De Koe | Straat | Een straat
Amsterdam | Stad | Een stad of dorp
Pedro Nunesplein | Plein | Een plein of open ruimte in een stad
Statue of Pedro Nunes | Monument | Een gedenkteken, standbeeld of herdenkingsstructuur
Pedro Nunes | Persoon | Portugese wiskundige, kosmograaf en professor
Municipality of Amsterdam | Overheidsorganisatie | Een lokale overheidsinstantie of gemeente
Universiteit Leiden | Onderwijsinstelling | Een universiteit, hogeschool of andere onderwijsinstantie
1502 | Datum | Een specifieke datum of jaartal
1578 | Datum | Een specifieke datum of jaartal
Portugal | Land | Een land of natie
Germany | Land | Een land of natie
</entiteiten>
### Voorbeeld van relaties
<relaties>
Pedro Nunesplein | genoemd naar | Pedro Nunes
Statue of Pedro Nunes | staat op | Pedro Nunesplein
Statue of Pedro Nunes | afbeeldt | Pedro Nunes
Pedro Nunes | geboren in | 1502
Pedro Nunes | gestorven in | 1578
Pedro Nunes | nationaliteit | Portugal
Pedro Nunes | werkte bij | Universiteit Leiden
</relaties>
Zoals je ziet wordt de format gebruikt van: [Entiteit naam] | [Type/Class] | [Beschrijving]
Voor relaties: [Entiteit 1] | [relatie type] | [Entiteit 2]
Tekst om te analyseren:
{text}"""
}
]
# Apply chat template and generate
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=16384)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=1000,
temperature=0.1, # Low temperature for structured output
do_sample=True,
top_p=0.95,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
# Decode response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the assistant's response
if "assistant:" in response:
response = response.split("assistant:")[-1].strip()
print(response)
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-4-mini-instruct",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
# Load adapter
model = PeftModel.from_pretrained(
base_model,
"UWV/wim-n1-phi4-mini-adapter"
)
tokenizer = AutoTokenizer.from_pretrained("UWV/wim-n1-phi4-mini-adapter")
# Use same inference code as above...
The model outputs structured text with entities and relations in a pipe-separated format:
<summary>
De tekst beschrijft de Schijfwereld, een fantasiewereld uit Terry Pratchett's boeken.
Het is een platte planeet die rust op vier olifanten, die op hun beurt op een
reusachtige schildpad staan.
</summary>
<entiteiten>
Schijfwereld | FictionalPlace | Een verzonnen wereld of locatie uit fictie
Terry Pratchett | Person | Een persoon
Berilia | FictionalCharacter | Een verzonnen personage of wezen
Tubul | FictionalCharacter | Een verzonnen personage of wezen
Groothuis T'Phon | FictionalCharacter | Een verzonnen personage of wezen
Jerakeen | FictionalCharacter | Een verzonnen personage of wezen
Groot A'Tuin | FictionalCharacter | Een verzonnen personage of wezen
</entiteiten>
<relaties>
Schijfwereld | gecreëerd door | Terry Pratchett
Schijfwereld | rust op | Berilia
Schijfwereld | rust op | Tubul
Schijfwereld | rust op | Groothuis T'Phon
Schijfwereld | rust op | Jerakeen
Berilia | staat op | Groot A'Tuin
Tubul | staat op | Groot A'Tuin
Groothuis T'Phon | staat op | Groot A'Tuin
Jerakeen | staat op | Groot A'Tuin
</relaties>
The model was trained on the UWV/wim-instruct-wiki-to-jsonld-agent-steps dataset, which contains:
Merged Model: UWV/wim-n1-phi4-mini-merged
(7.17 GB)
LoRA Adapter: UWV/wim-n1-phi4-mini-adapter
(~1.14 GB)
This model is part of the WIM (Wikipedia to Knowledge Graph) pipeline:
If you use this model, please cite:
@misc{wim-n1-phi4-mini,
author = {UWV InnovatieHub},
title = {Phi-4-mini N1 Entity Extraction Model},
year = {2025},
publisher = {HuggingFace},
url = {https://huggingface.co/UWV/wim-n1-phi4-mini-merged}
}
Base model
microsoft/Phi-4-mini-instruct