NLP-Paper-to-QA-Generation

This model is a fine-tuned version of google/pegasus-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9593

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 184
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss
No log 0.99 46 4.8204
5.3975 1.99 92 4.4450
5.3975 2.98 138 3.9634
4.494 3.97 184 3.4658
4.494 4.97 230 3.1863
3.5664 5.96 276 3.0828
3.5664 6.95 322 3.0403
3.2954 7.95 368 3.0155
3.2954 8.94 414 2.9989
3.1918 9.93 460 2.9826
3.1918 10.93 506 2.9742
3.1547 11.92 552 2.9670
3.1547 12.91 598 2.9620
3.1233 13.91 644 2.9601
3.1233 14.9 690 2.9593

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
5
Safetensors
Model size
571M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for UNIST-Eunchan/NLP-Paper-to-QA-Generation

Finetuned
(55)
this model