metadata
language: en
license: mit
tags:
- cross-encoder
- text-similarity
- text-classification
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("TrishanuDas/CE-7_512_MSELoss")
# Load model weights
model = AutoModelForSequenceClassification.from_pretrained("TrishanuDas/CE-7_512_MSELoss")
# Prepare input
inputs = tokenizer("Query", "Document", return_tensors="pt", padding=True, truncation=True)
# Get prediction
with torch.no_grad():
# Get logits
outputs = model(**inputs)
logits = outputs.logits
# Apply sigmoid to get probabilities
scores = torch.sigmoid(logits)
Important Note
When loading this model, you need to manually apply the sigmoid function to the logits as shown in the example above.