base_model: DavidAU/Qwen3-8B-64k-Context-2X-Medium
library_name: transformers
pipeline_tag: text-generation
tags:
- 64k context
- reasoning
- thinking
- qwen3
- llama-cpp
- gguf-my-repo
Triangle104/Qwen3-8B-64k-Context-2X-Medium-Q6_K-GGUF
This model was converted to GGUF format from DavidAU/Qwen3-8B-64k-Context-2X-Medium
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Qwen3 - 8B set at 64k (65536) context by extended YARN.
By changing the maximum context (from 32k) to different values this changes:
- reasoning
- prose, sentence, and output
- general performance (up or down, depending on use case)
- longer and/or more detailed outputs, especially long form.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Qwen3-8B-64k-Context-2X-Medium-Q6_K-GGUF --hf-file qwen3-8b-64k-context-2x-medium-q6_k.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Qwen3-8B-64k-Context-2X-Medium-Q6_K-GGUF --hf-file qwen3-8b-64k-context-2x-medium-q6_k.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Qwen3-8B-64k-Context-2X-Medium-Q6_K-GGUF --hf-file qwen3-8b-64k-context-2x-medium-q6_k.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Qwen3-8B-64k-Context-2X-Medium-Q6_K-GGUF --hf-file qwen3-8b-64k-context-2x-medium-q6_k.gguf -c 2048