|
--- |
|
base_model: Qwen/Qwen3-30B-A3B |
|
library_name: transformers |
|
license: apache-2.0 |
|
license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE |
|
pipeline_tag: text-generation |
|
tags: |
|
- llama-cpp |
|
- gguf-my-repo |
|
--- |
|
|
|
# Triangle104/Qwen3-30B-A3B-Q3_K_S-GGUF |
|
This model was converted to GGUF format from [`Qwen/Qwen3-30B-A3B`](https://huggingface.co/Qwen/Qwen3-30B-A3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-30B-A3B) for more details on the model. |
|
|
|
--- |
|
Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: |
|
|
|
Uniquely support of seamless switching between thinking mode (for complex logical reasoning, math, and coding) and non-thinking mode (for efficient, general-purpose dialogue) within single model, ensuring optimal performance across various scenarios. |
|
Significantly enhancement in its reasoning capabilities, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. |
|
Superior human preference alignment, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. |
|
Expertise in agent capabilities, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. |
|
Support of 100+ languages and dialects with strong capabilities for multilingual instruction following and translation. |
|
|
|
Model Overview |
|
- |
|
Qwen3-30B-A3B has the following features: |
|
|
|
Type: Causal Language Models |
|
Training Stage: Pretraining & Post-training |
|
Number of Parameters: 30.5B in total and 3.3B activated |
|
Number of Paramaters (Non-Embedding): 29.9B |
|
Number of Layers: 48 |
|
Number of Attention Heads (GQA): 32 for Q and 4 for KV |
|
Number of Experts: 128 |
|
Number of Activated Experts: 8 |
|
Context Length: 32,768 natively and 131,072 tokens with YaRN. |
|
|
|
--- |
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo Triangle104/Qwen3-30B-A3B-Q3_K_S-GGUF --hf-file qwen3-30b-a3b-q3_k_s.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo Triangle104/Qwen3-30B-A3B-Q3_K_S-GGUF --hf-file qwen3-30b-a3b-q3_k_s.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo Triangle104/Qwen3-30B-A3B-Q3_K_S-GGUF --hf-file qwen3-30b-a3b-q3_k_s.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo Triangle104/Qwen3-30B-A3B-Q3_K_S-GGUF --hf-file qwen3-30b-a3b-q3_k_s.gguf -c 2048 |
|
``` |
|
|