Triangle104's picture
Update README.md
2cf2f19 verified
metadata
license: apache-2.0
datasets:
  - nbeerbower/human-writing-dpo
base_model: nbeerbower/Mistral-Nemo-Gutenberg-Vitus-12B
tags:
  - llama-cpp
  - gguf-my-repo

Triangle104/Mistral-Nemo-Gutenberg-Vitus-12B-Q4_K_M-GGUF

This model was converted to GGUF format from nbeerbower/Mistral-Nemo-Gutenberg-Vitus-12B using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.


Mistral-Nemo-Gutenberg-Encore-12B finetuned on nbeerbower/human-writing-dpo with Mistral Instruct.

Method

ORPO tuned with 1x RTX A6000 for 3 epochs.


Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Triangle104/Mistral-Nemo-Gutenberg-Vitus-12B-Q4_K_M-GGUF --hf-file mistral-nemo-gutenberg-vitus-12b-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Triangle104/Mistral-Nemo-Gutenberg-Vitus-12B-Q4_K_M-GGUF --hf-file mistral-nemo-gutenberg-vitus-12b-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Triangle104/Mistral-Nemo-Gutenberg-Vitus-12B-Q4_K_M-GGUF --hf-file mistral-nemo-gutenberg-vitus-12b-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Triangle104/Mistral-Nemo-Gutenberg-Vitus-12B-Q4_K_M-GGUF --hf-file mistral-nemo-gutenberg-vitus-12b-q4_k_m.gguf -c 2048