|
--- |
|
license: apache-2.0 |
|
tags: |
|
- axolotl |
|
- dpo |
|
- trl |
|
- llama-cpp |
|
- gguf-my-repo |
|
base_model: HumanLLMs/Human-Like-Qwen2.5-7B-Instruct |
|
datasets: |
|
- HumanLLMs/Human-Like-DPO-Dataset |
|
language: |
|
- en |
|
model-index: |
|
- name: Humanish-Qwen2.5-7B-Instruct |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 72.84 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 34.48 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 0 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 6.49 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 8.42 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 37.76 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q6_K-GGUF |
|
This model was converted to GGUF format from [`HumanLLMs/Human-Like-Qwen2.5-7B-Instruct`](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) for more details on the model. |
|
|
|
--- |
|
Model details: |
|
- |
|
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct, specifically optimized to generate more human-like and conversational responses. |
|
|
|
The fine-tuning process employed both Low-Rank Adaptation (LoRA) and Direct Preference Optimization (DPO) to enhance natural language understanding, conversational coherence, and emotional intelligence in interactions. |
|
|
|
The proccess of creating this models is detailed in the research paper “Enhancing Human-Like Responses in Large Language Models”. |
|
🛠️ Training Configuration |
|
|
|
Base Model: Qwen2.5-7B-Instruct |
|
Framework: Axolotl v0.4.1 |
|
Hardware: 2x NVIDIA A100 (80 GB) GPUs |
|
Training Time: ~2 hours 15 minutes |
|
Dataset: Synthetic dataset with ≈11,000 samples across 256 diverse topics |
|
|
|
See axolotl config |
|
|
|
axolotl version: 0.4.1 |
|
|
|
base_model: Qwen/Qwen2.5-7B-Instruct |
|
model_type: AutoModalForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
trust_remote_code: true |
|
|
|
load_in_8bit: true |
|
load_in_4bit: false |
|
strict: false |
|
|
|
chat_template: chatml |
|
rl: dpo |
|
datasets: |
|
- path: HumanLLMs/humanish-dpo-project |
|
type: chatml.prompt_pairs |
|
chat_template: chatml |
|
|
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
output_dir: ./humanish-qwen2.5-7b-instruct |
|
|
|
sequence_len: 8192 |
|
sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 8 |
|
lora_alpha: 4 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: Humanish-DPO |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
hub_model_id: HumanLLMs/Humanish-Qwen2.5-7B-Instruct |
|
|
|
gradient_accumulation_steps: 8 |
|
micro_batch_size: 2 |
|
num_epochs: 1 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
s2_attention: |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 2 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
|
|
save_safetensors: true |
|
|
|
|
|
💬 Prompt Template |
|
|
|
You can use ChatML prompt template while using the model: |
|
ChatML |
|
|
|
<|im_start|>system |
|
{system}<|im_end|> |
|
<|im_start|>user |
|
{user}<|im_end|> |
|
<|im_start|>assistant |
|
{asistant}<|im_end|> |
|
|
|
This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method: |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are helpful AI asistant."}, |
|
{"role": "user", "content": "Hello!"} |
|
] |
|
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") |
|
model.generate(**gen_input) |
|
|
|
--- |
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q6_K-GGUF --hf-file human-like-qwen2.5-7b-instruct-q6_k.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q6_K-GGUF --hf-file human-like-qwen2.5-7b-instruct-q6_k.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q6_K-GGUF --hf-file human-like-qwen2.5-7b-instruct-q6_k.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q6_K-GGUF --hf-file human-like-qwen2.5-7b-instruct-q6_k.gguf -c 2048 |
|
``` |
|
|