Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF
This model was converted to GGUF format from HumanLLMs/Human-Like-Qwen2.5-7B-Instruct
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Model details:
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct, specifically optimized to generate more human-like and conversational responses.
The fine-tuning process employed both Low-Rank Adaptation (LoRA) and Direct Preference Optimization (DPO) to enhance natural language understanding, conversational coherence, and emotional intelligence in interactions.
The proccess of creating this models is detailed in the research paper “Enhancing Human-Like Responses in Large Language Models”. 🛠️ Training Configuration
Base Model: Qwen2.5-7B-Instruct
Framework: Axolotl v0.4.1
Hardware: 2x NVIDIA A100 (80 GB) GPUs
Training Time: ~2 hours 15 minutes
Dataset: Synthetic dataset with ≈11,000 samples across 256 diverse topics
See axolotl config
axolotl version: 0.4.1
base_model: Qwen/Qwen2.5-7B-Instruct model_type: AutoModalForCausalLM tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: true load_in_4bit: false strict: false
chat_template: chatml rl: dpo datasets:
- path: HumanLLMs/humanish-dpo-project type: chatml.prompt_pairs chat_template: chatml
dataset_prepared_path: val_set_size: 0.05 output_dir: ./humanish-qwen2.5-7b-instruct
sequence_len: 8192 sample_packing: false pad_to_sequence_len: true
adapter: lora lora_model_dir: lora_r: 8 lora_alpha: 4 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out:
wandb_project: Humanish-DPO wandb_entity: wandb_watch: wandb_name: wandb_log_model:
hub_model_id: HumanLLMs/Humanish-Qwen2.5-7B-Instruct
gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002
train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false
gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention:
warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config:
save_safetensors: true
💬 Prompt Template
You can use ChatML prompt template while using the model: ChatML
<|im_start|>system {system}<|im_end|> <|im_start|>user {user}<|im_end|> <|im_start|>assistant {asistant}<|im_end|>
This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method:
messages = [ {"role": "system", "content": "You are helpful AI asistant."}, {"role": "user", "content": "Hello!"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input)
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF --hf-file human-like-qwen2.5-7b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF --hf-file human-like-qwen2.5-7b-instruct-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF --hf-file human-like-qwen2.5-7b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF --hf-file human-like-qwen2.5-7b-instruct-q4_k_m.gguf -c 2048
- Downloads last month
- 28
Model tree for Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF
Base model
Qwen/Qwen2.5-7BDataset used to train Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF
Collection including Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard72.840
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard34.480
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard0.000
- acc_norm on GPQA (0-shot)Open LLM Leaderboard6.490
- acc_norm on MuSR (0-shot)Open LLM Leaderboard8.420
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard37.760