Text Generation
GGUF
English
medical
llama-cpp
gguf-my-repo
Inference Endpoints
conversational
Triangle104's picture
Update README.md
15233bf verified
---
license: apache-2.0
datasets:
- FreedomIntelligence/medical-o1-reasoning-SFT
- FreedomIntelligence/medical-o1-verifiable-problem
language:
- en
base_model: FreedomIntelligence/HuatuoGPT-o1-8B
pipeline_tag: text-generation
tags:
- medical
- llama-cpp
- gguf-my-repo
---
# Triangle104/HuatuoGPT-o1-8B-Q6_K-GGUF
This model was converted to GGUF format from [`FreedomIntelligence/HuatuoGPT-o1-8B`](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) for more details on the model.
---
Model details:
-
HuatuoGPT-o1 is a medical LLM designed for advanced medical reasoning. It generates a complex thought process, reflecting and refining its reasoning, before providing a final response.
Usage
You can use HuatuoGPT-o1 in the same way as Llama-3.1-8B-Instruct. You can deploy it with tools like vllm or Sglang, or perform direct inference:
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-8B",torch_dtype="auto",device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-8B")
input_text = "How to stop a cough?"
messages = [{"role": "user", "content": input_text}]
inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True
), return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=2048)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
HuatuoGPT-o1 adopts a thinks-before-it-answers approach, with outputs formatted as:
## Thinking
[Reasoning process]
## Final Response
[Output]
๐Ÿ“– Citation
@misc{chen2024huatuogpto1medicalcomplexreasoning,
title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs},
author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang},
year={2024},
eprint={2412.18925},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.18925},
}
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/HuatuoGPT-o1-8B-Q6_K-GGUF --hf-file huatuogpt-o1-8b-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/HuatuoGPT-o1-8B-Q6_K-GGUF --hf-file huatuogpt-o1-8b-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/HuatuoGPT-o1-8B-Q6_K-GGUF --hf-file huatuogpt-o1-8b-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/HuatuoGPT-o1-8B-Q6_K-GGUF --hf-file huatuogpt-o1-8b-q6_k.gguf -c 2048
```