metadata
base_model: Spestly/Atlas-Flash-7B-Preview
tags:
- text-generation-inference
- transformers
- qwen2
- trl
- r1
- gemini-2.0
- gpt4
- conversational
- chat
- llama-cpp
- gguf-my-repo
license: mit
language:
- en
- zh
- fr
- es
- pt
- de
- it
- ru
- ja
- ko
- vi
- th
- ar
- fa
- he
- tr
- cs
- pl
- hi
- bn
- ur
- id
- ms
- lo
- my
- ceb
- km
- tl
- nl
library_name: transformers
datasets:
- BAAI/TACO
- codeparrot/apps
- rubenroy/GammaCorpus-v1-70k-UNFILTERED
extra_gated_prompt: >-
By accessing this model, you agree to comply with ethical usage guidelines and
accept full responsibility for its applications. You will not use this model
for harmful, malicious, or illegal activities, and you understand that the
model's use is subject to ongoing monitoring for misuse. This model is
provided 'AS IS' and agreeing to this means that you are responsible for all
the outputs generated by you
extra_gated_fields:
Name: text
Organization: text
Country: country
Date of Birth: date_picker
Intended Use:
type: select
options:
- Research
- Education
- Personal Development
- Commercial Use
- label: Other
value: other
I agree to use this model in accordance with all applicable laws and ethical guidelines: checkbox
I agree to use this model under the MIT licence: checkbox
Triangle104/Atlas-Flash-7B-Preview-Q6_K-GGUF
This model was converted to GGUF format from Spestly/Atlas-Flash-7B-Preview
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Atlas-Flash-7B-Preview-Q6_K-GGUF --hf-file atlas-flash-7b-preview-q6_k.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Atlas-Flash-7B-Preview-Q6_K-GGUF --hf-file atlas-flash-7b-preview-q6_k.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Atlas-Flash-7B-Preview-Q6_K-GGUF --hf-file atlas-flash-7b-preview-q6_k.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Atlas-Flash-7B-Preview-Q6_K-GGUF --hf-file atlas-flash-7b-preview-q6_k.gguf -c 2048