See axolotl config
axolotl version: 0.6.0
# git clone https://github.com/axolotl-ai-cloud/axolotl
# cd axolotl
# git checkout bd2a594b8954103719f8d1ef739e2c3267ca36f6
# pip3 install packaging ninja huggingface_hub[cli]
# pip3 install -e '.[flash-attn,deepspeed]'
# huggingface-cli login --token $hf_key && wandb login $wandb_key
# python -m axolotl.cli.preprocess intern-rp-test-human.yml
# accelerate launch -m axolotl.cli.train intern-rp-test-human.yml
# python -m axolotl.cli.merge_lora qwen-rp-test-human.yml
# huggingface-cli upload ToastyPigeon/tqi-some-rp-40 train-workspace/merged . --exclude "*.md"
# sleep 10h; runpodctl stop pod $RUNPOD_POD_ID &
# git clone https://github.com/axolotl-ai-cloud/axolotl && cd axolotl && pip3 install packaging ninja huggingface_hub[cli] && pip3 install -e '.[flash-attn,deepspeed]' && cd .. && huggingface-cli login --token $hf_key && wandb login $wandb_key
# Model
base_model: internlm/internlm3-8b-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
bf16: true
fp16:
tf32: false
flash_attention: true
special_tokens:
# Output
output_dir: ./train-workspace
hub_model_id: ToastyPigeon/intern-rp-lora
hub_strategy: "all_checkpoints"
auto_resume_from_checkpoint: true
#resume_from_checkpoint: ./train-workspace/checkpoint-304
saves_per_epoch: 2
save_total_limit: 4
# Data
sequence_len: 8192 # fits
min_sample_len: 128
chat_template: chatml
dataset_prepared_path: last_run_prepared
datasets:
- path: ToastyPigeon/some-rp
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
#train_on_inputs: true
- path: BeaverAI/cedo-unalignment
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
- path: BeaverAI/foundRP
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
split: train[:1000]
- path: PocketDoc/Dans-Prosemaxx-Gutenberg
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
- path: ToastyPigeon/SpringDragon-Instruct
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
split: train[:500]
- path: allenai/tulu-3-sft-personas-instruction-following
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
split: train[:500]
- path: allura-org/fujin-cleaned-stage-2
type: completion
field: text
split: train[:500]
warmup_steps: 20
shuffle_merged_datasets: true
sample_packing: true
pad_to_sequence_len: true
# Batching
num_epochs: 2
gradient_accumulation_steps: 1
micro_batch_size: 1
eval_batch_size: 1
# Evaluation
val_set_size: 100
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: false
save_safetensors: true
# WandB
wandb_project: Intern-Rp-Test
#wandb_entity:
gradient_checkpointing: 'unsloth'
gradient_checkpointing_kwargs:
use_reentrant: false
unsloth_cross_entropy_loss: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true
# LoRA
adapter: qlora
lora_r: 32
lora_alpha: 64
lora_dropout: 0.25
lora_target_linear: true
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
#peft_use_rslora: true
#loraplus_lr_ratio: 8
# Optimizer
optimizer: paged_ademamix_8bit
lr_scheduler: cosine
learning_rate: 3e-5
cosine_min_lr_ratio: 0.1
weight_decay: 0.01
max_grad_norm: 1.0
# Misc
train_on_inputs: false
group_by_length: false
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
#debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json # previously blank
fsdp:
fsdp_config:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
gc_steps: 10
seed: 69
intern-rp-lora
This model is a fine-tuned version of internlm/internlm3-8b-instruct on the ToastyPigeon/some-rp, the BeaverAI/cedo-unalignment, the BeaverAI/foundRP, the PocketDoc/Dans-Prosemaxx-Gutenberg, the ToastyPigeon/SpringDragon-Instruct, the allenai/tulu-3-sft-personas-instruction-following and the allura-org/fujin-cleaned-stage-2 datasets. It achieves the following results on the evaluation set:
- Loss: 1.7197
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 69
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are: No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2794 | 0.0013 | 1 | 1.8317 |
1.6416 | 0.1 | 75 | 1.7826 |
2.3547 | 0.2 | 150 | 1.7643 |
1.9114 | 0.3 | 225 | 1.7546 |
2.0004 | 0.4 | 300 | 1.7474 |
2.2052 | 0.5 | 375 | 1.7428 |
1.9314 | 0.6 | 450 | 1.7377 |
2.202 | 0.7 | 525 | 1.7350 |
2.2453 | 0.8 | 600 | 1.7303 |
1.8392 | 0.9 | 675 | 1.7283 |
1.7018 | 1.0 | 750 | 1.7271 |
1.9736 | 1.0987 | 825 | 1.7264 |
2.0917 | 1.1987 | 900 | 1.7245 |
1.5679 | 1.2987 | 975 | 1.7239 |
2.0799 | 1.3987 | 1050 | 1.7225 |
1.8398 | 1.4987 | 1125 | 1.7220 |
1.9806 | 1.5987 | 1200 | 1.7211 |
1.7334 | 1.6987 | 1275 | 1.7209 |
2.1457 | 1.7987 | 1350 | 1.7205 |
1.7804 | 1.8987 | 1425 | 1.7202 |
2.1652 | 1.9987 | 1500 | 1.7197 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Model tree for ToastyPigeon/intern-rp-lora
Base model
internlm/internlm3-8b-instruct