metadata
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
- generated_from_trainer
datasets:
- fancy_dataset
metrics:
- accuracy
model-index:
- name: longformer-spans
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: fancy_dataset
type: fancy_dataset
config: spans
split: test
args: spans
metrics:
- name: Accuracy
type: accuracy
value: 0.9297359274785911
longformer-spans
This model is a fine-tuned version of allenai/longformer-base-4096 on the fancy_dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.1948
- B: {'precision': 0.773955773955774, 'recall': 0.8923512747875354, 'f1-score': 0.8289473684210527, 'support': 1059.0}
- I: {'precision': 0.9401371161027814, 'recall': 0.9597155049786629, 'f1-score': 0.949825430791756, 'support': 17575.0}
- O: {'precision': 0.9301474791357037, 'recall': 0.8771967654986523, 'f1-score': 0.9028964598823661, 'support': 9275.0}
- Accuracy: 0.9297
- Macro avg: {'precision': 0.8814134563980863, 'recall': 0.9097545150882835, 'f1-score': 0.893889753031725, 'support': 27909.0}
- Weighted avg: {'precision': 0.9305115500057043, 'recall': 0.9297359274785911, 'f1-score': 0.929642834739043, 'support': 27909.0}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 41 | 0.2901 | {'precision': 0.8336673346693386, 'recall': 0.392823418319169, 'f1-score': 0.5340179717586649, 'support': 1059.0} | {'precision': 0.9134376209164778, 'recall': 0.9402560455192034, 'f1-score': 0.9266528346324231, 'support': 17575.0} | {'precision': 0.8671531280180277, 'recall': 0.871266846361186, 'f1-score': 0.8692051199311606, 'support': 9275.0} | 0.8966 | {'precision': 0.8714193612012814, 'recall': 0.7347821033998527, 'f1-score': 0.7766253087740829, 'support': 27909.0} | {'precision': 0.8950290285352085, 'recall': 0.8965566663083593, 'f1-score': 0.892662800104582, 'support': 27909.0} |
No log | 2.0 | 82 | 0.2109 | {'precision': 0.7553191489361702, 'recall': 0.8715769593956563, 'f1-score': 0.8092941692240245, 'support': 1059.0} | {'precision': 0.9298303409652446, 'recall': 0.9635846372688478, 'f1-score': 0.9464066167430425, 'support': 17575.0} | {'precision': 0.9366296908189757, 'recall': 0.8557412398921833, 'f1-score': 0.8943602456476422, 'support': 9275.0} | 0.9243 | {'precision': 0.8739263935734636, 'recall': 0.8969676121855624, 'f1-score': 0.883353677204903, 'support': 27909.0} | {'precision': 0.9254681860164671, 'recall': 0.9242538249310258, 'f1-score': 0.9239073450445768, 'support': 27909.0} |
No log | 3.0 | 123 | 0.1948 | {'precision': 0.773955773955774, 'recall': 0.8923512747875354, 'f1-score': 0.8289473684210527, 'support': 1059.0} | {'precision': 0.9401371161027814, 'recall': 0.9597155049786629, 'f1-score': 0.949825430791756, 'support': 17575.0} | {'precision': 0.9301474791357037, 'recall': 0.8771967654986523, 'f1-score': 0.9028964598823661, 'support': 9275.0} | 0.9297 | {'precision': 0.8814134563980863, 'recall': 0.9097545150882835, 'f1-score': 0.893889753031725, 'support': 27909.0} | {'precision': 0.9305115500057043, 'recall': 0.9297359274785911, 'f1-score': 0.929642834739043, 'support': 27909.0} |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2