metadata
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
- generated_from_trainer
datasets:
- fancy_dataset
metrics:
- accuracy
model-index:
- name: longformer-one-step
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: fancy_dataset
type: fancy_dataset
config: full_labels
split: test
args: full_labels
metrics:
- name: Accuracy
type: accuracy
value: 0.8161524956107349
longformer-one-step
This model is a fine-tuned version of allenai/longformer-base-4096 on the fancy_dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.5164
- Claim: {'precision': 0.5841029946823397, 'recall': 0.47910927456382, 'f1-score': 0.5264219952074664, 'support': 4356.0}
- Majorclaim: {'precision': 0.663898774219059, 'recall': 0.7694775435380385, 'f1-score': 0.7127998301846742, 'support': 2182.0}
- O: {'precision': 0.9219015280135824, 'recall': 0.8781671159029649, 'f1-score': 0.8995030369961348, 'support': 9275.0}
- Premise: {'precision': 0.8377274128893001, 'recall': 0.8983961640211641, 'f1-score': 0.8670017552257859, 'support': 12096.0}
- Accuracy: 0.8162
- Macro avg: {'precision': 0.7519076774510703, 'recall': 0.7562875245064969, 'f1-score': 0.7514316544035153, 'support': 27909.0}
- Weighted avg: {'precision': 0.8125252509519227, 'recall': 0.8161524956107349, 'f1-score': 0.8125897502575133, 'support': 27909.0}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 41 | 0.7242 | {'precision': 0.4451114922813036, 'recall': 0.23829201101928374, 'f1-score': 0.3104066985645933, 'support': 4356.0} | {'precision': 0.6888297872340425, 'recall': 0.11869844179651695, 'f1-score': 0.20250195465207194, 'support': 2182.0} | {'precision': 0.7629536017331648, 'recall': 0.9112668463611859, 'f1-score': 0.8305409521937798, 'support': 9275.0} | {'precision': 0.7774552148976847, 'recall': 0.9077380952380952, 'f1-score': 0.83756054769442, 'support': 12096.0} | 0.7427 | {'precision': 0.6685875240365489, 'recall': 0.5439988486037705, 'f1-score': 0.5452525382762162, 'support': 27909.0} | {'precision': 0.7138351496506337, 'recall': 0.7427353183560859, 'f1-score': 0.7032996725252499, 'support': 27909.0} |
No log | 2.0 | 82 | 0.5451 | {'precision': 0.5706823375775384, 'recall': 0.40128558310376494, 'f1-score': 0.47122253673001757, 'support': 4356.0} | {'precision': 0.6872317596566524, 'recall': 0.5870760769935839, 'f1-score': 0.6332179930795848, 'support': 2182.0} | {'precision': 0.8817295464179737, 'recall': 0.8970350404312668, 'f1-score': 0.8893164448720005, 'support': 9275.0} | {'precision': 0.819134799940942, 'recall': 0.9173280423280423, 'f1-score': 0.8654551127057172, 'support': 12096.0} | 0.8042 | {'precision': 0.7396946108982767, 'recall': 0.7006811857141645, 'f1-score': 0.71480302184683, 'support': 27909.0} | {'precision': 0.7908462519320261, 'recall': 0.8042208606542692, 'f1-score': 0.7936967322502336, 'support': 27909.0} |
No log | 3.0 | 123 | 0.5164 | {'precision': 0.5841029946823397, 'recall': 0.47910927456382, 'f1-score': 0.5264219952074664, 'support': 4356.0} | {'precision': 0.663898774219059, 'recall': 0.7694775435380385, 'f1-score': 0.7127998301846742, 'support': 2182.0} | {'precision': 0.9219015280135824, 'recall': 0.8781671159029649, 'f1-score': 0.8995030369961348, 'support': 9275.0} | {'precision': 0.8377274128893001, 'recall': 0.8983961640211641, 'f1-score': 0.8670017552257859, 'support': 12096.0} | 0.8162 | {'precision': 0.7519076774510703, 'recall': 0.7562875245064969, 'f1-score': 0.7514316544035153, 'support': 27909.0} | {'precision': 0.8125252509519227, 'recall': 0.8161524956107349, 'f1-score': 0.8125897502575133, 'support': 27909.0} |
Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1