Theoreticallyhugo's picture
trainer: training complete at 2023-11-14 13:47:22.126011.
bf0fb71
|
raw
history blame
4.39 kB
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-ner-essays-classify_span
    results: []

bert-ner-essays-classify_span

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6855
  • Claim: {'precision': 0.4016393442622951, 'recall': 0.3402777777777778, 'f1-score': 0.3684210526315789, 'support': 144.0}
  • Majorclaim: {'precision': 0.5882352941176471, 'recall': 0.5555555555555556, 'f1-score': 0.5714285714285715, 'support': 72.0}
  • Premise: {'precision': 0.7947494033412887, 'recall': 0.8473282442748091, 'f1-score': 0.8201970443349754, 'support': 393.0}
  • Accuracy: 0.6929
  • Macro avg: {'precision': 0.5948746805737436, 'recall': 0.5810538592027141, 'f1-score': 0.5866822227983753, 'support': 609.0}
  • Weighted avg: {'precision': 0.6773818099562685, 'recall': 0.6929392446633826, 'f1-score': 0.6839621135393265, 'support': 609.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Claim Majorclaim Premise Accuracy Macro avg Weighted avg
No log 1.0 267 0.6910 {'precision': 0.40860215053763443, 'recall': 0.2638888888888889, 'f1-score': 0.3206751054852321, 'support': 144.0} {'precision': 0.625, 'recall': 0.3472222222222222, 'f1-score': 0.44642857142857145, 'support': 72.0} {'precision': 0.7521008403361344, 'recall': 0.910941475826972, 'f1-score': 0.8239355581127733, 'support': 393.0} 0.6913 {'precision': 0.5952343302912563, 'recall': 0.5073508623126944, 'f1-score': 0.5303464116755255, 'support': 609.0} {'precision': 0.6558527749253206, 'recall': 0.6912972085385879, 'f1-score': 0.66030664478005, 'support': 609.0}
0.7234 2.0 534 0.6855 {'precision': 0.4016393442622951, 'recall': 0.3402777777777778, 'f1-score': 0.3684210526315789, 'support': 144.0} {'precision': 0.5882352941176471, 'recall': 0.5555555555555556, 'f1-score': 0.5714285714285715, 'support': 72.0} {'precision': 0.7947494033412887, 'recall': 0.8473282442748091, 'f1-score': 0.8201970443349754, 'support': 393.0} 0.6929 {'precision': 0.5948746805737436, 'recall': 0.5810538592027141, 'f1-score': 0.5866822227983753, 'support': 609.0} {'precision': 0.6773818099562685, 'recall': 0.6929392446633826, 'f1-score': 0.6839621135393265, 'support': 609.0}

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3