SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a MultiOutputClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8485 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("TheoLvs/wsl-prescreening-multi-v0.0")
# Run inference
preds = model("Wetland carbon sequestration capacity shows non-linear response to restoration technique and hydrological regime This study examines carbon sequestration outcomes from 124 wetland restoration projects across North America, Europe, and Asia over a 15-year monitoring period. Using standardized carbon flux measurements and sediment coring, we quantified how restoration approach and hydrological management influence carbon accumulation rates. Results demonstrate that restoration technique explained 53% of variance in carbon sequestration outcomes, with significant interaction effects between technique and hydroperiod. Projects restoring natural hydrological fluctuations achieved 2.7 times higher carbon accumulation rates than those maintaining static water levels. Vegetation community composition emerged as a significant mediating variable, with diverse native assemblages sequestering 34% more carbon than simplified or non-native communities. Our findings indicate that wetland restoration prioritizing hydrological dynamism and diverse vegetation delivers superior climate mitigation benefits while simultaneously enhancing habitat value and water quality functions.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 90 | 191.8561 | 348 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (5, 5)
- max_steps: 5000
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0006 | 1 | 0.158 | - |
0.0288 | 50 | 0.2511 | - |
0.0575 | 100 | 0.215 | - |
0.0863 | 150 | 0.1883 | - |
0.1151 | 200 | 0.165 | - |
0.1438 | 250 | 0.1274 | - |
0.1726 | 300 | 0.0801 | - |
0.2014 | 350 | 0.0635 | - |
0.2301 | 400 | 0.0427 | - |
0.2589 | 450 | 0.0355 | - |
0.2877 | 500 | 0.0337 | - |
0.3165 | 550 | 0.0271 | - |
0.3452 | 600 | 0.0069 | - |
0.3740 | 650 | 0.0032 | - |
0.4028 | 700 | 0.0033 | - |
0.4315 | 750 | 0.0027 | - |
0.4603 | 800 | 0.0022 | - |
0.4891 | 850 | 0.002 | - |
0.5178 | 900 | 0.0019 | - |
0.5466 | 950 | 0.0017 | - |
0.5754 | 1000 | 0.0017 | - |
0.6041 | 1050 | 0.0015 | - |
0.6329 | 1100 | 0.0015 | - |
0.6617 | 1150 | 0.0013 | - |
0.6904 | 1200 | 0.0013 | - |
0.7192 | 1250 | 0.0014 | - |
0.7480 | 1300 | 0.0012 | - |
0.7768 | 1350 | 0.0012 | - |
0.8055 | 1400 | 0.0011 | - |
0.8343 | 1450 | 0.0012 | - |
0.8631 | 1500 | 0.0011 | - |
0.8918 | 1550 | 0.0011 | - |
0.9206 | 1600 | 0.0011 | - |
0.9494 | 1650 | 0.001 | - |
0.9781 | 1700 | 0.001 | - |
1.0069 | 1750 | 0.001 | - |
1.0357 | 1800 | 0.001 | - |
1.0644 | 1850 | 0.0009 | - |
1.0932 | 1900 | 0.0009 | - |
1.1220 | 1950 | 0.0009 | - |
1.1507 | 2000 | 0.0009 | - |
1.1795 | 2050 | 0.0009 | - |
1.2083 | 2100 | 0.0009 | - |
1.2371 | 2150 | 0.0008 | - |
1.2658 | 2200 | 0.0009 | - |
1.2946 | 2250 | 0.0008 | - |
1.3234 | 2300 | 0.0008 | - |
1.3521 | 2350 | 0.0008 | - |
1.3809 | 2400 | 0.0008 | - |
1.4097 | 2450 | 0.0008 | - |
1.4384 | 2500 | 0.0008 | - |
1.4672 | 2550 | 0.0007 | - |
1.4960 | 2600 | 0.0007 | - |
1.5247 | 2650 | 0.0007 | - |
1.5535 | 2700 | 0.0007 | - |
1.5823 | 2750 | 0.0007 | - |
1.6110 | 2800 | 0.0007 | - |
1.6398 | 2850 | 0.0007 | - |
1.6686 | 2900 | 0.0007 | - |
1.6974 | 2950 | 0.0007 | - |
1.7261 | 3000 | 0.0006 | - |
1.7549 | 3050 | 0.0007 | - |
1.7837 | 3100 | 0.0007 | - |
1.8124 | 3150 | 0.0007 | - |
1.8412 | 3200 | 0.0007 | - |
1.8700 | 3250 | 0.0007 | - |
1.8987 | 3300 | 0.0006 | - |
1.9275 | 3350 | 0.0006 | - |
1.9563 | 3400 | 0.0006 | - |
1.9850 | 3450 | 0.0006 | - |
2.0138 | 3500 | 0.0006 | - |
2.0426 | 3550 | 0.0006 | - |
2.0713 | 3600 | 0.0006 | - |
2.1001 | 3650 | 0.0006 | - |
2.1289 | 3700 | 0.0006 | - |
2.1577 | 3750 | 0.0006 | - |
2.1864 | 3800 | 0.0006 | - |
2.2152 | 3850 | 0.0006 | - |
2.2440 | 3900 | 0.0006 | - |
2.2727 | 3950 | 0.0006 | - |
2.3015 | 4000 | 0.0006 | - |
2.3303 | 4050 | 0.0006 | - |
2.3590 | 4100 | 0.0006 | - |
2.3878 | 4150 | 0.0006 | - |
2.4166 | 4200 | 0.0005 | - |
2.4453 | 4250 | 0.0006 | - |
2.4741 | 4300 | 0.0005 | - |
2.5029 | 4350 | 0.0006 | - |
2.5316 | 4400 | 0.0006 | - |
2.5604 | 4450 | 0.0005 | - |
2.5892 | 4500 | 0.0005 | - |
2.6180 | 4550 | 0.0005 | - |
2.6467 | 4600 | 0.0005 | - |
2.6755 | 4650 | 0.0005 | - |
2.7043 | 4700 | 0.0005 | - |
2.7330 | 4750 | 0.0005 | - |
2.7618 | 4800 | 0.0005 | - |
2.7906 | 4850 | 0.0005 | - |
2.8193 | 4900 | 0.0005 | - |
2.8481 | 4950 | 0.0005 | - |
2.8769 | 5000 | 0.0005 | - |
Framework Versions
- Python: 3.11.12
- SetFit: 1.1.2
- Sentence Transformers: 4.1.0
- Transformers: 4.45.2
- PyTorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.20.3
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for TheoLvs/wsl-prescreening-multi-v0.0
Base model
BAAI/bge-small-en-v1.5