ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Thejina/modernbert-embed-base-legal-matryoshka-2-new")
# Run inference
sentences = [
'Homeland Sec., No. 12-856, 2013 WL 3186061, at *18 (D.D.C. June 24, 2013) (citing In re \nSealed Case, 737 F.2d at 100). The “subjective intentions” of confidentiality put forth by the \nCIA are therefore insufficient to establish “confidentiality in fact.” Id. \nThe third and final deficiency manifests only in the CIA’s submissions in No. 11-445.',
'On what date was the cited decision in the D.D.C. court made?',
'Which organization is associated with the Exemption 3 withholdings discussed in Part III.E.3?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5564 |
cosine_accuracy@3 | 0.5873 |
cosine_accuracy@5 | 0.6677 |
cosine_accuracy@10 | 0.7512 |
cosine_precision@1 | 0.5564 |
cosine_precision@3 | 0.5234 |
cosine_precision@5 | 0.3892 |
cosine_precision@10 | 0.2328 |
cosine_recall@1 | 0.1984 |
cosine_recall@3 | 0.5162 |
cosine_recall@5 | 0.6255 |
cosine_recall@10 | 0.7414 |
cosine_ndcg@10 | 0.652 |
cosine_mrr@10 | 0.5976 |
cosine_map@100 | 0.6379 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.544 |
cosine_accuracy@3 | 0.5734 |
cosine_accuracy@5 | 0.6538 |
cosine_accuracy@10 | 0.7481 |
cosine_precision@1 | 0.544 |
cosine_precision@3 | 0.5106 |
cosine_precision@5 | 0.3784 |
cosine_precision@10 | 0.2304 |
cosine_recall@1 | 0.1947 |
cosine_recall@3 | 0.5059 |
cosine_recall@5 | 0.6096 |
cosine_recall@10 | 0.7366 |
cosine_ndcg@10 | 0.6424 |
cosine_mrr@10 | 0.5859 |
cosine_map@100 | 0.6256 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5193 |
cosine_accuracy@3 | 0.5518 |
cosine_accuracy@5 | 0.6445 |
cosine_accuracy@10 | 0.7125 |
cosine_precision@1 | 0.5193 |
cosine_precision@3 | 0.4884 |
cosine_precision@5 | 0.3694 |
cosine_precision@10 | 0.2185 |
cosine_recall@1 | 0.1859 |
cosine_recall@3 | 0.4818 |
cosine_recall@5 | 0.5936 |
cosine_recall@10 | 0.6963 |
cosine_ndcg@10 | 0.6116 |
cosine_mrr@10 | 0.56 |
cosine_map@100 | 0.6015 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4343 |
cosine_accuracy@3 | 0.4776 |
cosine_accuracy@5 | 0.5641 |
cosine_accuracy@10 | 0.6553 |
cosine_precision@1 | 0.4343 |
cosine_precision@3 | 0.4116 |
cosine_precision@5 | 0.3184 |
cosine_precision@10 | 0.2002 |
cosine_recall@1 | 0.1597 |
cosine_recall@3 | 0.4137 |
cosine_recall@5 | 0.5185 |
cosine_recall@10 | 0.6381 |
cosine_ndcg@10 | 0.5422 |
cosine_mrr@10 | 0.4823 |
cosine_map@100 | 0.5293 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3246 |
cosine_accuracy@3 | 0.3648 |
cosine_accuracy@5 | 0.456 |
cosine_accuracy@10 | 0.5348 |
cosine_precision@1 | 0.3246 |
cosine_precision@3 | 0.3107 |
cosine_precision@5 | 0.2485 |
cosine_precision@10 | 0.1623 |
cosine_recall@1 | 0.1207 |
cosine_recall@3 | 0.3131 |
cosine_recall@5 | 0.4083 |
cosine_recall@10 | 0.5252 |
cosine_ndcg@10 | 0.4298 |
cosine_mrr@10 | 0.3712 |
cosine_map@100 | 0.4185 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 29 tokens
- mean: 97.85 tokens
- max: 170 tokens
- min: 7 tokens
- mean: 16.58 tokens
- max: 38 tokens
- Samples:
positive anchor n.2. But the Court cannot simply adopt this concession. “[S]ubject-matter jurisdiction, because
it involves a court’s power to hear a case, can never be forfeited or waived.” United States v.
Cotton, 535 U.S. 625, 630 (2002). The Court thus has “an independent obligation to determine
whether subject-matter jurisdiction exists.” Arbaugh v. Y&H Corp., 546 U.S. 500, 514 (2006).According to Cotton, what can never be forfeited or waived?
another because they involve common factual and legal issues. See Notice of Related Case, No. 11-444, ECF No. 2;
Notice of Related Case, No. 11-445, ECF No. 2. Although the Court has not formally consolidated these actions,
due to their interrelated nature and in the interests of judicial economy the Court has adjudicated dispositive motionsHas the Court formally consolidated the actions from the Notices of Related Case?
[PROSECUTOR]: He’s authenticated it as to be the date and the time of the
incident, it was a true and accurate reflection of that date and time.
THE COURT: There are other questions you need to ask him, like, has he
watched it.
[PROSECUTOR]: Okay.
THE COURT: And is it a fair and accurate representation of what happened.
I mean, I’m not trying --
[PROSECUTOR]: Okay.What did the prosecutor confirm about the date and time?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8791 | 10 | 90.1655 | - | - | - | - | - |
1.0 | 12 | - | 0.6103 | 0.5866 | 0.5539 | 0.4942 | 0.3692 |
1.7033 | 20 | 39.3527 | - | - | - | - | - |
2.0 | 24 | - | 0.6500 | 0.6321 | 0.6009 | 0.5327 | 0.4111 |
2.5275 | 30 | 30.0319 | - | - | - | - | - |
3.0 | 36 | - | 0.6521 | 0.6454 | 0.6096 | 0.5400 | 0.4305 |
3.3516 | 40 | 27.1479 | - | - | - | - | - |
3.7033 | 44 | - | 0.652 | 0.6424 | 0.6116 | 0.5422 | 0.4298 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Thejina/modernbert-embed-base-legal-matryoshka-2-new
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.556
- Cosine Accuracy@3 on dim 768self-reported0.587
- Cosine Accuracy@5 on dim 768self-reported0.668
- Cosine Accuracy@10 on dim 768self-reported0.751
- Cosine Precision@1 on dim 768self-reported0.556
- Cosine Precision@3 on dim 768self-reported0.523
- Cosine Precision@5 on dim 768self-reported0.389
- Cosine Precision@10 on dim 768self-reported0.233
- Cosine Recall@1 on dim 768self-reported0.198
- Cosine Recall@3 on dim 768self-reported0.516