|
--- |
|
inference: false |
|
license: other |
|
--- |
|
|
|
<!-- header start --> |
|
<div style="width: 100%;"> |
|
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> |
|
</div> |
|
<div style="display: flex; flex-direction: column; align-items: flex-end;"> |
|
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> |
|
</div> |
|
</div> |
|
<!-- header end --> |
|
|
|
# June Lee's Wizard Vicuna 13B GGML |
|
|
|
These files are GGML format model files for [June Lee's Wizard Vicuna 13B](https://huggingface.co/TheBloke/wizard-vicuna-13B-HF). |
|
|
|
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev). |
|
|
|
In order to use the increased context length, you can presently use: |
|
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later. |
|
|
|
Support is also expected to come to llama.cpp, however it is still being worked on and there is currently no ETA for that. |
|
|
|
To use the increased context with KoboldCpp and (when supported) llama.cpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`. |
|
|
|
## Repositories available |
|
|
|
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-SuperHOT-8K-GPTQ) |
|
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-SuperHOT-8K-GGML) |
|
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/wizard-vicuna-13B-SuperHOT-8K-fp16) |
|
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/junelee/wizard-vicuna-13b) |
|
|
|
<!-- compatibility_ggml start --> |
|
## Compatibility |
|
|
|
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants. |
|
|
|
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context. |
|
|
|
## Explanation of the new k-quant methods |
|
|
|
The new methods available are: |
|
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) |
|
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. |
|
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. |
|
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw |
|
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw |
|
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. |
|
|
|
Refer to the Provided Files table below to see what files use which methods, and how. |
|
<!-- compatibility_ggml end --> |
|
|
|
## Provided files |
|
| Name | Quant method | Bits | Size | Max RAM required | Use case | |
|
| ---- | ---- | ---- | ---- | ---- | ----- | |
|
| wizard-vicuna-13b-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 5.51 GB | 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | |
|
| wizard-vicuna-13b-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.93 GB | 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | |
|
| wizard-vicuna-13b-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.31 GB | 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | |
|
| wizard-vicuna-13b-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.66 GB | 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | |
|
| wizard-vicuna-13b-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.87 GB | 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | |
|
| wizard-vicuna-13b-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.37 GB | 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | |
|
| wizard-vicuna-13b-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.23 GB | 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | |
|
| wizard-vicuna-13b-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.97 GB | 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | |
|
| wizard-vicuna-13b-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | |
|
|
|
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. |
|
|
|
## How to run in `koboldcpp` |
|
|
|
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096: |
|
|
|
``` |
|
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas 100 wizard-vicuna-13b-superhot-8k.ggmlv3.q5_0.bin |
|
``` |
|
|
|
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration. |
|
|
|
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU. |
|
|
|
<!-- footer start --> |
|
## Discord |
|
|
|
For further support, and discussions on these models and AI in general, join us at: |
|
|
|
[TheBloke AI's Discord server](https://discord.gg/theblokeai) |
|
|
|
## Thanks, and how to contribute. |
|
|
|
Thanks to the [chirper.ai](https://chirper.ai) team! |
|
|
|
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. |
|
|
|
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. |
|
|
|
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. |
|
|
|
* Patreon: https://patreon.com/TheBlokeAI |
|
* Ko-Fi: https://ko-fi.com/TheBlokeAI |
|
|
|
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. |
|
|
|
**Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski. |
|
|
|
Thank you to all my generous patrons and donaters! |
|
|
|
<!-- footer end --> |
|
|
|
# Original model card: Kaio Ken's SuperHOT 8K |
|
|
|
### SuperHOT Prototype 2 w/ 8K Context |
|
|
|
This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k). |
|
Tests have shown that the model does indeed leverage the extended context at 8K. |
|
|
|
You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192** |
|
|
|
#### Looking for Merged & Quantized Models? |
|
- 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors) |
|
- 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors) |
|
|
|
|
|
#### Training Details |
|
I trained the LoRA with the following configuration: |
|
- 1200 samples (~400 samples over 2048 sequence length) |
|
- learning rate of 3e-4 |
|
- 3 epochs |
|
- The exported modules are: |
|
- q_proj |
|
- k_proj |
|
- v_proj |
|
- o_proj |
|
- no bias |
|
- Rank = 4 |
|
- Alpha = 8 |
|
- no dropout |
|
- weight decay of 0.1 |
|
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5 |
|
- Trained on 4-bit base model |
|
|
|
# Original model card: June Lee's Wizard Vicuna 13B |
|
|
|
<!-- header start --> |
|
<div style="width: 100%;"> |
|
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> |
|
</div> |
|
<div style="display: flex; flex-direction: column; align-items: flex-end;"> |
|
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> |
|
</div> |
|
</div> |
|
<!-- header end --> |
|
# Wizard-Vicuna-13B-HF |
|
|
|
This is a float16 HF format repo for [junelee's wizard-vicuna 13B](https://huggingface.co/junelee/wizard-vicuna-13b). |
|
|
|
June Lee's repo was also HF format. The reason I've made this is that the original repo was in float32, meaning it required 52GB disk space, VRAM and RAM. |
|
|
|
This model was converted to float16 to make it easier to load and manage. |
|
|
|
## Repositories available |
|
|
|
* [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-GPTQ). |
|
* [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-GGML). |
|
* [float16 HF format model for GPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-HF). |
|
|
|
<!-- footer start --> |
|
## Discord |
|
|
|
For further support, and discussions on these models and AI in general, join us at: |
|
|
|
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) |
|
|
|
## Thanks, and how to contribute. |
|
|
|
Thanks to the [chirper.ai](https://chirper.ai) team! |
|
|
|
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. |
|
|
|
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. |
|
|
|
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. |
|
|
|
* Patreon: https://patreon.com/TheBlokeAI |
|
* Ko-Fi: https://ko-fi.com/TheBlokeAI |
|
|
|
**Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman. |
|
|
|
Thank you to all my generous patrons and donaters! |
|
<!-- footer end --> |
|
|
|
# Original WizardVicuna-13B model card |
|
|
|
Github page: https://github.com/melodysdreamj/WizardVicunaLM |
|
|
|
# WizardVicunaLM |
|
### Wizard's dataset + ChatGPT's conversation extension + Vicuna's tuning method |
|
I am a big fan of the ideas behind WizardLM and VicunaLM. I particularly like the idea of WizardLM handling the dataset itself more deeply and broadly, as well as VicunaLM overcoming the limitations of single-turn conversations by introducing multi-round conversations. As a result, I combined these two ideas to create WizardVicunaLM. This project is highly experimental and designed for proof of concept, not for actual usage. |
|
|
|
|
|
## Benchmark |
|
### Approximately 7% performance improvement over VicunaLM |
|
![](https://user-images.githubusercontent.com/21379657/236088663-3fa212c9-0112-4d44-9b01-f16ea093cb67.png) |
|
|
|
|
|
### Detail |
|
|
|
The questions presented here are not from rigorous tests, but rather, I asked a few questions and requested GPT-4 to score them. The models compared were ChatGPT 3.5, WizardVicunaLM, VicunaLM, and WizardLM, in that order. |
|
|
|
| | gpt3.5 | wizard-vicuna-13b | vicuna-13b | wizard-7b | link | |
|
|-----|--------|-------------------|------------|-----------|----------| |
|
| Q1 | 95 | 90 | 85 | 88 | [link](https://sharegpt.com/c/YdhIlby) | |
|
| Q2 | 95 | 97 | 90 | 89 | [link](https://sharegpt.com/c/YOqOV4g) | |
|
| Q3 | 85 | 90 | 80 | 65 | [link](https://sharegpt.com/c/uDmrcL9) | |
|
| Q4 | 90 | 85 | 80 | 75 | [link](https://sharegpt.com/c/XBbK5MZ) | |
|
| Q5 | 90 | 85 | 80 | 75 | [link](https://sharegpt.com/c/AQ5tgQX) | |
|
| Q6 | 92 | 85 | 87 | 88 | [link](https://sharegpt.com/c/eVYwfIr) | |
|
| Q7 | 95 | 90 | 85 | 92 | [link](https://sharegpt.com/c/Kqyeub4) | |
|
| Q8 | 90 | 85 | 75 | 70 | [link](https://sharegpt.com/c/M0gIjMF) | |
|
| Q9 | 92 | 85 | 70 | 60 | [link](https://sharegpt.com/c/fOvMtQt) | |
|
| Q10 | 90 | 80 | 75 | 85 | [link](https://sharegpt.com/c/YYiCaUz) | |
|
| Q11 | 90 | 85 | 75 | 65 | [link](https://sharegpt.com/c/HMkKKGU) | |
|
| Q12 | 85 | 90 | 80 | 88 | [link](https://sharegpt.com/c/XbW6jgB) | |
|
| Q13 | 90 | 95 | 88 | 85 | [link](https://sharegpt.com/c/JXZb7y6) | |
|
| Q14 | 94 | 89 | 90 | 91 | [link](https://sharegpt.com/c/cTXH4IS) | |
|
| Q15 | 90 | 85 | 88 | 87 | [link](https://sharegpt.com/c/GZiM0Yt) | |
|
| | 91 | 88 | 82 | 80 | | |
|
|
|
|
|
## Principle |
|
|
|
We adopted the approach of WizardLM, which is to extend a single problem more in-depth. However, instead of using individual instructions, we expanded it using Vicuna's conversation format and applied Vicuna's fine-tuning techniques. |
|
|
|
Turning a single command into a rich conversation is what we've done [here](https://sharegpt.com/c/6cmxqq0). |
|
|
|
After creating the training data, I later trained it according to the Vicuna v1.1 [training method](https://github.com/lm-sys/FastChat/blob/main/scripts/train_vicuna_13b.sh). |
|
|
|
|
|
## Detailed Method |
|
|
|
First, we explore and expand various areas in the same topic using the 7K conversations created by WizardLM. However, we made it in a continuous conversation format instead of the instruction format. That is, it starts with WizardLM's instruction, and then expands into various areas in one conversation using ChatGPT 3.5. |
|
|
|
After that, we applied the following model using Vicuna's fine-tuning format. |
|
|
|
## Training Process |
|
|
|
Trained with 8 A100 GPUs for 35 hours. |
|
|
|
## Weights |
|
You can see the [dataset](https://huggingface.co/datasets/junelee/wizard_vicuna_70k) we used for training and the [13b model](https://huggingface.co/junelee/wizard-vicuna-13b) in the huggingface. |
|
|
|
## Conclusion |
|
If we extend the conversation to gpt4 32K, we can expect a dramatic improvement, as we can generate 8x more, more accurate and richer conversations. |
|
|
|
## License |
|
The model is licensed under the LLaMA model, and the dataset is licensed under the terms of OpenAI because it uses ChatGPT. Everything else is free. |
|
|
|
## Author |
|
|
|
[JUNE LEE](https://github.com/melodysdreamj) - He is active in Songdo Artificial Intelligence Study and GDG Songdo. |
|
|