license: other
tags:
- OpenAccess AI Collective
- MPT
- axolotl
datasets:
- ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
- QingyiSi/Alpaca-CoT
- teknium/GPTeacher-General-Instruct
- metaeval/ScienceQA_text_only
- hellaswag
- openai/summarize_from_feedback
- riddle_sense
- gsm8k
- camel-ai/math
- camel-ai/biology
- camel-ai/physics
- camel-ai/chemistry
- winglian/evals
model_name: Minotaur 13B Fixed
base_model: openaccess-ai-collective/minotaur-13b-fixed
inference: false
model_creator: Open Access AI Collective
model_type: llama
prompt_template: >
A chat between a curious user and an artificial intelligence assistant. The
assistant gives helpful, detailed, and polite answers to the user's questions.
USER: {prompt} ASSISTANT:
quantized_by: TheBloke
TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Minotaur 13B Fixed - GGUF
- Model creator: Open Access AI Collective
- Original model: Minotaur 13B Fixed
Description
This repo contains GGUF format model files for OpenAccess AI Collective's Minotaur 13B Fixed.
About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplate list of clients and libraries that are known to support GGUF:
- llama.cpp. The source project for GGUF. Offers a CLI and a server option.
- text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
- KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
- LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
- LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
- Faraday.dev, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
- ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
- llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
- candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- Open Access AI Collective's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: Vicuna
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
Compatibility
These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit d0cee0d
They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
Explanation of quantisation methods
Click to see details
The new methods available are:
- GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
- GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
- GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
- GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
- GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
Provided files
Name | Quant method | Bits | Size | Max RAM required | Use case |
---|---|---|---|---|---|
minotaur-13b.Q2_K.gguf | Q2_K | 2 | 5.43 GB | 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
minotaur-13b.Q3_K_S.gguf | Q3_K_S | 3 | 5.66 GB | 8.16 GB | very small, high quality loss |
minotaur-13b.Q3_K_M.gguf | Q3_K_M | 3 | 6.34 GB | 8.84 GB | very small, high quality loss |
minotaur-13b.Q3_K_L.gguf | Q3_K_L | 3 | 6.93 GB | 9.43 GB | small, substantial quality loss |
minotaur-13b.Q4_0.gguf | Q4_0 | 4 | 7.37 GB | 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
minotaur-13b.Q4_K_S.gguf | Q4_K_S | 4 | 7.41 GB | 9.91 GB | small, greater quality loss |
minotaur-13b.Q4_K_M.gguf | Q4_K_M | 4 | 7.87 GB | 10.37 GB | medium, balanced quality - recommended |
minotaur-13b.Q5_0.gguf | Q5_0 | 5 | 8.97 GB | 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
minotaur-13b.Q5_K_S.gguf | Q5_K_S | 5 | 8.97 GB | 11.47 GB | large, low quality loss - recommended |
minotaur-13b.Q5_K_M.gguf | Q5_K_M | 5 | 9.23 GB | 11.73 GB | large, very low quality loss - recommended |
minotaur-13b.Q6_K.gguf | Q6_K | 6 | 10.68 GB | 13.18 GB | very large, extremely low quality loss |
minotaur-13b.Q8_0.gguf | Q8_0 | 8 | 13.83 GB | 16.33 GB | very large, extremely low quality loss - not recommended |
Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
How to download GGUF files
Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
- LM Studio
- LoLLMS Web UI
- Faraday.dev
In text-generation-webui
Under Download Model, you can enter the model repo: TheBloke/minotaur-13B-fixed-GGUF and below it, a specific filename to download, such as: minotaur-13b.Q4_K_M.gguf.
Then click Download.
On the command line, including multiple files at once
I recommend using the huggingface-hub
Python library:
pip3 install huggingface-hub
Then you can download any individual model file to the current directory, at high speed, with a command like this:
huggingface-cli download TheBloke/minotaur-13B-fixed-GGUF minotaur-13b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
More advanced huggingface-cli download usage
You can also download multiple files at once with a pattern:
huggingface-cli download TheBloke/minotaur-13B-fixed-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
For more documentation on downloading with huggingface-cli
, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.
To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer
:
pip3 install hf_transfer
And set environment variable HF_HUB_ENABLE_HF_TRANSFER
to 1
:
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/minotaur-13B-fixed-GGUF minotaur-13b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1
before the download command.
Example llama.cpp
command
Make sure you are using llama.cpp
from commit d0cee0d or later.
./main -ngl 32 -m minotaur-13b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:"
Change -ngl 32
to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change -c 2048
to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
If you want to have a chat-style conversation, replace the -p <PROMPT>
argument with -i -ins
For other parameters and how to use them, please refer to the llama.cpp documentation
How to run in text-generation-webui
Further instructions here: text-generation-webui/docs/llama.cpp.md.
How to run from Python code
You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries.
How to load this model in Python code, using ctransformers
First install the package
Run one of the following commands, according to your system:
# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers
Simple ctransformers example code
from ctransformers import AutoModelForCausalLM
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/minotaur-13B-fixed-GGUF", model_file="minotaur-13b.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
print(llm("AI is going to"))
How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: OpenAccess AI Collective's Minotaur 13B Fixed
💵 Donate to OpenAccess AI Collective to help us keep building great tools and models!
Due to a bug, the initial release of Minotaur 13B dropped a few datasets during training. We have corrected the issue and this is the retrained model
The affected datasets include:
- prose generation
- classification
- coding
Minotaur 13B (FIXED)
Minotaur 13B is an instruct fine-tuned model on top of LlaMA-13B. Minotaur 13B is fine-tuned on only completely open datasets making this model reproducible by anyone.
Questions, comments, feedback, looking to donate, or want to help? Reach out on our Discord or email [email protected]
Prompts
Chat only style prompts using USER:
,ASSISTANT:
.
Training Datasets
Minotaur 13B model is fine-tuned on the following openly available datasets:
- WizardLM
- subset of QingyiSi/Alpaca-CoT for roleplay and CoT
- GPTeacher-General-Instruct
- metaeval/ScienceQA_text_only - instruct for concise responses
- openai/summarize_from_feedback - instruct augmented tl;dr summarization
- camel-ai/math
- camel-ai/physics
- camel-ai/chemistry
- camel-ai/biology
- winglian/evals - instruct augmented datasets
- custom sysnthetic datasets around misconceptions, in-context qa, jokes, N-tasks problems, and context-insensitivity
- ARC-Easy & ARC-Challenge - instruct augmented for detailed responses, derived from the
train
split - hellaswag - 30K+ rows of instruct augmented for detailed explanations w 30K+ rows, derived from the
train
split - riddle_sense - instruct augmented, derived from the
train
split - gsm8k - instruct augmented, derived from the
train
split - prose generation
Shoutouts
Special thanks to Nanobit for helping with Axolotl and TheBloke for quantizing these models are more accessible to all.
Demo
HF Demo in Spaces available in the Community ChatBot Arena under the OAAIC Chatbots tab.
Release Notes
Build
Minotaur was built with Axolotl on 6XA100 80GB
- 1 epochs taking approximately 7.5 hours
Bias, Risks, and Limitations
Minotaur has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). Minotaur was fine-tuned from the base model LLaMA-13B, please refer to its model card's Limitations Section for relevant information. (included below)
Benchmarks
hf-causal-experimental (pretrained=openaccess-ai-collective/minotaur-13b-fixed), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 0.4778 | _ | 0.0146 |
acc_norm | 0.4932 | _ | 0.0146 | ||
arc_easy | 0 | acc | 0.7786 | _ | 0.0085 |
acc_norm | 0.7487 | _ | 0.0089 | ||
boolq | 1 | acc | 0.8141 | _ | 0.0068 |
hellaswag | 0 | acc | 0.6072 | _ | 0.0049 |
acc_norm | 0.7929 | _ | 0.0040 | ||
openbookqa | 0 | acc | 0.3420 | _ | 0.0212 |
acc_norm | 0.4580 | _ | 0.0223 | ||
piqa | 0 | acc | 0.8025 | _ | 0.0093 |
acc_norm | 0.8107 | _ | 0.0091 | ||
winogrande | 0 | acc | 0.7285 | _ | 0.0125 |
Examples - results may vary based on temperature (0.7 for this) and other settings
The following is a chat between a USER and a friendly and helpful ASSISTANT.
USER: Solve for x: 5x = 3x + 10
ASSISTANT:A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
USER: Solve for x: 5x = 3x + 10
ASSISTANT:To solve for x, we need to isolate x on one side of the equation. We can do this by following these steps:
1. Subtract 3x from both sides of the equation:
5x - 3x = 3x + 10 - 3x
2x = 10
2. Divide both sides of the equation by 2:
2x/2 = 10/2
x = 5
The following is a chat between a USER and a friendly and helpful ASSISTANT.
USER: You have 3 apples. You eat 2 pears. How many apples do you have left?
ASSISTANT:You still have 3 apples. Eating pears does not affect the number of apples you have.
The following is a chat between a USER and a friendly and helpful ASSISTANT.
USER: List three words that start with "ex". What is 33 + 77?
ASSISTANT:Three words that start with "ex" are "express", "exact", and "excite". 33 + 77 = 110.
The following is a chat between a USER and a friendly and helpful ASSISTANT.
USER: Write a haiku about dinosaurs.
ASSISTANT:Titanic creatures roam,
Thunderous footsteps echo,
Extinct but not forgotten.
meh, 6/7/7 rather than 5/7/5
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
USER: Create an original short story in the style of J.K Rowling about the Weesley family going on a vacation in Australia whith Harry Potter and Hermione Grainger tagging along.
ASSISTANT:Once upon a time, there was a magical family named the Weesleys. They lived in a cozy little cottage at the edge of Hogsmeade village, where they ran a charming bed and breakfast called "The Flying Ford Anglia." A
s any other magical family, they enjoyed adventures that brought them close to nature, so they decided to go on a trip to Australia. They invited their dear friends Harry Potter and Hermione Grainger to join them on this ex
citing journey.
The Weesleys had been planning for months and had everything ready for their trip. Their children, Freddie and Roxanne were thrilled to visit the land down under, and their parents, George and Angelina, could not wait to ex
plore the beautiful country with their friends. They would be leaving soon, but before departing, there was one small problem - the luggage.
"We can't possibly take all these trunks!" exclaimed Freddie as he stared at the mountain of bags stacked up in front of him.
His father looked at him seriously. "You see, son," he began, "our luggage is crucial because we have to pack all our magical essentials like wand holsters, extra wand chargers, spell books, potions ingredients, and much mo
re."
Roxanne interrupted, "But daddy, we don't even use magic in everyday life! And what if it rains? We'll look weird carrying umbrellas around!"
Her mother joined in. "My dear, you know how unpredictable the weather can be. We must always be prepared for unexpected circumstances. Don't forget that even Muggles carry umbrellas."
After hours of debating, they finally managed to narrow down their luggage list and fit all the necessary supplies into several large trunks. The day had come; they were ready to leave for their grand adventure!
As the Weesleys boarded the Portkey that would transport them across the world, their wands began to glow softly, indicating that they had enough energy to make the journey. The Portkey dropped them off in Sydney, right in
front of the magnificent Opera House.
They spent the first few days exploring the city, marveling at the iconic architecture and tasting local cuisine. Then, as planned, they headed north to visit the Great Barrier Reef, one of the most famous natural wonders o
f the world.
Harry and Hermione joined them during this leg of the trip, which made it even more enjoyable. Harry regaled them with tales of his own travels while Hermione shared her extensive knowledge of plants, animals, and the envir
onment.
Soon, they arrived at a quaint town nestled among vibrant green hills and surrounded by vast cattle farms. It was here that they would learn about Aboriginal culture and see some truly unique sights.
One morning, after enjoying a hearty breakfast, they set out to explore the local area. They visited a nearby art gallery that showcased amazing Indigenous works of art, including traditional paintings, sculptures, and text
iles. Afterward, they attended a didgeridoo concert given by a talented young musician who captivated everyone with his soulful tunes.
The following day, they embarked on a bushwalk through the rainforest trails. The air was cool and fresh, and the towering trees seemed to reach for the sky. Hermione took great pleasure in identifying various species of pl
ants and explaining their medicinal properties.
As they walked deeper into the forest, they heard faint chattering noises coming from high above. To their surprise, they spotted a group of small, furry creatures perched on a tree branch. They turned out to be native Aust
ralian possums, which delighted the children, especially Freddie, who could communicate with them using sign language.
Later that afternoon, they visited Uluru, also known as Ayers Rock, a massive sandstone monolith located in the heart of the Outback. The sight of its magnificent red hues against the blue sky left them all speechless. They
spent the rest of the day exploring the rock formation, taking in the breathtaking views and learning about its significance to the Anangu people.
Their last destination was Queensland, home to the world-famous Great Barrier Reef. They spent two days snorkeling, diving, and swimming among the colorful coral reefs, watching schools of fish, sea turtles, and dolphins sw
im past them.
As the sun began to set over the crystal-clear waters, Harry spoke up. "I think it's time we return to reality, don't you agree?" he said, looking at his wife. "This trip has been fantastic, but we can't stay forever."
Everyone nodded in agreement as they prepared themselves for their final journey back to Sydney. When they got there, they gathered on the balcony of their hotel room, reminiscing about the incredible memories they had crea
ted together.
"Thank you for inviting us along on your adventure, Weesleys," said Harry. "It was an honor and a privilege to share this experience with such kind and generous friends. I hope we can do it again sometime."
With tears in their eyes and heavy hearts, they bid each other farewell, promising to keep in touch and meet again soon. And so, their epic journey came to an end. But the memories would remain with them forever, reminding
them of the power of friendship, the beauty of nature, and the importance of discovering new worlds.