File size: 31,365 Bytes
e6fed70
 
 
35d3697
 
 
e6fed70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fe8a5
e6fed70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fe8a5
e6fed70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fe8a5
e6fed70
 
 
 
 
 
 
 
23fe8a5
e6fed70
 
 
 
 
23fe8a5
e6fed70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fe8a5
e6fed70
 
23fe8a5
e6fed70
 
 
 
 
 
23fe8a5
e6fed70
 
23fe8a5
e6fed70
 
 
 
23fe8a5
e6fed70
 
 
 
 
 
 
 
 
 
 
 
 
23fe8a5
e6fed70
 
 
23fe8a5
 
 
e6fed70
23fe8a5
e6fed70
23fe8a5
 
 
 
 
e6fed70
 
23fe8a5
e6fed70
 
 
 
 
23fe8a5
e6fed70
 
 
 
 
 
23fe8a5
e6fed70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
---
license: other
model_name: WizardLM 13B 1.0
base_model: WizardLM/WizardLM-13B-V1.0
inference: false
model_creator: WizardLM
model_type: llama
prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
  The assistant gives helpful, detailed, and polite answers to the user''s questions.
  USER: {prompt} ASSISTANT:

  '
quantized_by: TheBloke
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# WizardLM 13B 1.0 - GGUF
- Model creator: [WizardLM](https://huggingface.co/WizardLM)
- Original model: [WizardLM 13B 1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0)

<!-- description start -->
## Description

This repo contains GGUF format model files for [WizardLM's WizardLM 13B 1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0).

<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplate list of clients and libraries that are known to support GGUF:

* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.

<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/WizardLM-13B-1.0-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF)
* [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/wizardLM-13B-1.0-fp16)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Vicuna

```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:

```

<!-- prompt-template end -->


<!-- compatibility_gguf start -->
## Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

## Explanation of quantisation methods
<details>
  <summary>Click to see details</summary>

The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->

<!-- README_GGUF.md-provided-files start -->
## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [wizardLM-13B-1.0.Q2_K.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
| [wizardLM-13B-1.0.Q3_K_S.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
| [wizardLM-13B-1.0.Q3_K_M.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
| [wizardLM-13B-1.0.Q3_K_L.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
| [wizardLM-13B-1.0.Q4_0.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [wizardLM-13B-1.0.Q4_K_S.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
| [wizardLM-13B-1.0.Q4_K_M.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
| [wizardLM-13B-1.0.Q5_0.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [wizardLM-13B-1.0.Q5_K_S.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
| [wizardLM-13B-1.0.Q5_K_M.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
| [wizardLM-13B-1.0.Q6_K.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
| [wizardLM-13B-1.0.Q8_0.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |

**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.



<!-- README_GGUF.md-provided-files end -->

<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files

**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
- LM Studio
- LoLLMS Web UI
- Faraday.dev

### In `text-generation-webui`

Under Download Model, you can enter the model repo: TheBloke/WizardLM-13B-1.0-GGUF and below it, a specific filename to download, such as: wizardLM-13B-1.0.Q4_K_M.gguf.

Then click Download.

### On the command line, including multiple files at once

I recommend using the `huggingface-hub` Python library:

```shell
pip3 install huggingface-hub
```

Then you can download any individual model file to the current directory, at high speed, with a command like this:

```shell
huggingface-cli download TheBloke/WizardLM-13B-1.0-GGUF wizardLM-13B-1.0.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```

<details>
  <summary>More advanced huggingface-cli download usage</summary>

You can also download multiple files at once with a pattern:

```shell
huggingface-cli download TheBloke/WizardLM-13B-1.0-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```

For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).

To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:

```shell
pip3 install hf_transfer
```

And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:

```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WizardLM-13B-1.0-GGUF wizardLM-13B-1.0.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```

Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->

<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command

Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.

```shell
./main -ngl 32 -m wizardLM-13B-1.0.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:"
```

Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run in `text-generation-webui`

Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).

## How to run from Python code

You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.

### How to load this model in Python code, using ctransformers

#### First install the package

Run one of the following commands, according to your system:

```shell
# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers
```

#### Simple ctransformers example code

```python
from ctransformers import AutoModelForCausalLM

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/WizardLM-13B-1.0-GGUF", model_file="wizardLM-13B-1.0.Q4_K_M.gguf", model_type="llama", gpu_layers=50)

print(llm("AI is going to"))
```

## How to use with LangChain

Here are guides on using llama-cpp-python and ctransformers with LangChain:

* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)

<!-- README_GGUF.md-how-to-run end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

<!-- original-model-card start -->
# Original model card: WizardLM's WizardLM 13B 1.0


<!-- header start -->
<div style="width: 100%;">
    <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<!-- header end -->

# WizardLM 13B 1.0 fp16

These files are fp16 unquantised format model files for [WizardLM 13B 1.0](https://huggingface.co/victor123/WizardLM-13B-1.0).

It is the result of merging the deltas provided in the above repo.

## Need support? Want to discuss? I now have a Discord!

Join me at: https://discord.gg/UBgz4VXf

## Other repositories available

* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GPTQ)
* [4-bit, 5-bit and 8-bit GGML models for CPU(+GPU) inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGML)
* [Merged, unquantised fp16 model in HF format](https://huggingface.co/TheBloke/WizardLM-13B-1.0-HF)

## Prompt Template

```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
USER: prompt goes here
ASSISTANT:
```

<!-- footer start -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)

## Thanks, and how to contribute.

Thanks to the [chirper.ai](https://chirper.ai) team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.

Thank you to all my generous patrons and donaters!
<!-- footer end -->

# Original model card

## WizardLM: An Instruction-following LLM Using Evol-Instruct
Empowering Large Pre-Trained Language Models to Follow Complex Instructions

<p align="center" width="100%">
<a ><img src="imgs/WizardLM.png" alt="WizardLM" style="width: 20%; min-width: 300px; display: block; margin: auto;"></a>
</p>

[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
[![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE)
[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/release/python-390/)

## News

At present, our core contributors are preparing the **33B** version and we expect to empower WizardLM with the ability to perform instruction evolution itself, aiming to evolve your specific data at a low cost.

- 🔥 We released **13B** version of **WizardLM** trained with **250k** evolved instructions (from ShareGPT). Checkout the [Demo_13B](https://a6d4f31b5a1ee33f.gradio.app/), [Demo_13B_bak](https://e79c80d2c2379e77.gradio.app) and the GPT-4 evaluation. Please download our delta model at the following [link](https://huggingface.co/victor123/WizardLM-13B-1.0).
- 🔥 We released **7B** version of **WizardLM** trained with **70k** evolved instructions (from Alpaca data). Checkout the [paper](https://arxiv.org/abs/2304.12244) and [Demo_7B](https://f195ccdce69a86d5.gradio.app) , [Demo_7B_bak](https://ce25bd0feced0f77.gradio.app)
- &#x1F4E3; We are looking for highly motivated students to join us as interns to create more intelligent AI together. Please contact [email protected]

<!-- Although on our **complexity-balanced test set**, **WizardLM-7B has more cases that are preferred by human labelers than ChatGPT** in the high-complexity instructions (difficulty level >= 8), it still lags behind ChatGPT on the entire test set, and we also consider WizardLM to still be in a **baby state**. This repository will **continue to improve WizardLM**, train on larger scales, add more training data, and innovate more advanced large-model training methods. -->

<b>Note for 13B model usage:</b> To obtain results **identical to our demo**, please strictly follow the prompts and invocation methods provided in the **"src/infer_wizardlm13b.py"** to use our 13B model for inference. Unlike the 7B model, the 13B model adopts the prompt format from Vicuna and supports **multi-turn** conversation.

<b>Note for demo usage:</b> We only recommend using **English** to experience our model. Support for other languages will be introduced in the future. The demo currently only supports **single-turn** conversation.

### GPT-4 automatic evaluation

We adopt the automatic evaluation framework based on GPT-4 proposed by FastChat to assess the performance of chatbot models. As shown in the following figure, WizardLM-13B achieved better results than Vicuna-13b.
<p align="center" width="100%">
<a ><img src="imgs/WizarLM13b-GPT4.png" alt="WizardLM" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
</p>

### WizardLM-13B performance on different skills.

The following figure compares WizardLM-13B and ChatGPT’s skill on Evol-Instruct testset. The result indicates that WizardLM-13B achieves 89.1% of ChatGPT’s performance on average, with almost 100% (or more than) capacity on 10 skills, and more than 90% capacity on 22 skills.

<p align="center" width="100%">
<a ><img src="imgs/evol-testset_skills-13b.png" alt="WizardLM" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
</p>

## Call for Feedbacks
We welcome everyone to use your professional and difficult instructions to evaluate WizardLM, and show us examples of poor performance and your suggestions in the [issue discussion](https://github.com/nlpxucan/WizardLM/issues) area. We are focusing on improving the Evol-Instruct now and hope to relieve existing weaknesses and issues in the the next version of WizardLM. After that, we will open the code and pipeline of up-to-date Evol-Instruct algorithm and work with you together to improve it.

## Unofficial Video Introductions
Thanks to the enthusiastic friends, their video introductions are more lively and interesting.
1. [GET WizardLM NOW! 7B LLM KING That Can Beat ChatGPT! I'm IMPRESSED!](https://www.youtube.com/watch?v=SaJ8wyKMBds)
2. [WizardLM: Enhancing Large Language Models to Follow Complex Instructions](https://www.youtube.com/watch?v=I6sER-qivYk)

## Case Show
We just sample some cases to demonstrate the performance of WizardLM and ChatGPT on data of varying difficulty, and the details pls refer [Case Show](https://github.com/nlpxucan/WizardLM/blob/main/src/case_show.md).

## Overview of Evol-Instruct

[Evol-Instruct](https://github.com/nlpxucan/evol-instruct) is a novel method using LLMs instead of humans to automatically mass-produce open-domain instructions of various difficulty levels and skills range, to improve the performance of LLMs.

<p align="center" width="100%">
<a ><img src="imgs/git_overall.png" alt="WizardLM" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
</p>

<p align="center" width="100%">
<a ><img src="imgs/git_running.png" alt="WizardLM" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
</p>

## Contents

1. [Online Demo](#online-demo)

2. [Training Data](#training-data)

3. [WizardLM Weights](#wizardlm-weights)

4. [Fine-tuning](#fine-tuning)

5. [Distributed Fine-tuning](#distributed-Fine-tuning)

6. [Inference](#inference)

7. [Evaluation](#evaluation)

8. [Citation](#citation)

9. [Disclaimer](#disclaimer)

## Online Demo

We will provide our latest models for you to try for as long as possible. If you find a link is not working, please try another one. At the same time, please try as many **real-world** and **challenging** problems that you encounter in your work and life as possible. We will continue to evolve our models with your feedbacks.

[Demo Link](https://011fc8477ad734d7.gradio.app)

[Demo Backup 1](https://1825e531c43a23c7.gradio.app)




## Training Data

[`alpaca_evol_instruct_70k.json`](https://huggingface.co/datasets/victor123/evol_instruct_70k) contains 70K instruction-following data generated from Evol-Instruct. We used it for fine-tuning the WizardLM model.
This JSON file is a list of dictionaries, each dictionary contains the following fields:

- `instruction`: `str`, describes the task the model should perform. Each of the 70K instructions is unique.
- `output`: `str`, the answer to the instruction as generated by `gpt-3.5-turbo`.



## WizardLM Weights
We release [WizardLM] weights as delta weights to comply with the LLaMA model license.
You can add our delta to the original LLaMA weights to obtain the WizardLM weights. Instructions:
1. Get the original LLaMA weights in the huggingface format by following the instructions [here](https://huggingface.co/docs/transformers/main/model_doc/llama).
2. Please download our delta model at the following [link](https://huggingface.co/victor123/WizardLM)
3. Use the following scripts to get WizardLM weights by applying our delta:
```
python src/weight_diff_wizard.py recover --path_raw <path_to_step_1_dir> --path_diff <path_to_step_2_dir> --path_tuned <path_to_store_recovered_weights>
```

## Fine-tuning

We fine-tune WizardLM using code from [Llama-X](https://github.com/AetherCortex/Llama-X).
We fine-tune LLaMA-7B and LLaMA-13B with the following hyperparameters:

| Hyperparameter | LLaMA-7B | LLaMA-13B|
|----------------|----------|----------|
| Batch size     | 64       | 384      |
| Learning rate  | 2e-5     | 2e-5     |
| Epochs         | 3        | 3        |
| Max length     | 2048     | 2048     |
| Warmup step    | 2        | 50       |
| LR scheduler   | cosine   | cosine   |

To reproduce our fine-tuning of WizardLM, please follow the following steps:
1. According to the instructions of [Llama-X](https://github.com/AetherCortex/Llama-X), install the environment, download the training code, and deploy.
2. Replace the train.py with the train_freeform.py in our repo(src/train_freeform.py)
3. Execute the following training command:
```bash
deepspeed train_freeform.py \
    --model_name_or_path /path/to/llama-7B/hf \
    --data_path /path/to/alpaca_evol_instruct_70k.json \
    --output_dir /path/to/wizardlm-7B/hf/ft \
    --num_train_epochs 3 \
    --model_max_length 2048 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps 1 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 800 \
    --save_total_limit 3 \
    --learning_rate 2e-5 \
    --warmup_steps 2 \
    --logging_steps 2 \
    --lr_scheduler_type "cosine" \
    --report_to "tensorboard" \
    --gradient_checkpointing True \
    --deepspeed configs/deepspeed_config.json \
    --fp16 True
```

## Distributed Fine-tuning
See [Distributed Fine-tuning](./doc/distributed_finetune.md)

## Inference

We provide the decoding script for WizardLM, which reads a input file and generates corresponding responses for each sample, and finally consolidates them into an output file.

You can specify `base_model`, `input_data_path` and `output_data_path` in src\inference_wizardlm.py to set the decoding model, path of input file and path of output file.
The decoding command:
```
python src\inference_wizardlm.py
```

### Evaluation

To evaluate Wizard, we conduct human evaluation on the inputs from our human instruct evaluation set [`WizardLM_testset.jsonl`](./data/WizardLM_testset.jsonl) . This evaluation set was collected by the authors and covers a diverse list of user-oriented instructions including difficult Coding Generation & Debugging, Math, Reasoning, Complex Formats, Academic Writing, Extensive Disciplines, and so on. We performed a blind pairwise comparison between Wizard and baselines. Specifically, we recruit 10 well-educated annotators to rank the models from 1 to 5 on relevance, knowledgeable, reasoning, calculation and accuracy.

WizardLM achieved significantly better results than Alpaca and Vicuna-7b.
<p align="center" width="60%">
<a ><img src="imgs/win.png" alt="WizardLM" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a>
</p>

In the high-difficulty section of our test set (difficulty level >= 8), WizardLM even outperforms ChatGPT, with a win rate 7.9% larger than Chatgpt (42.9% vs. 35.0%). This indicates that our method can significantly improve the ability of large language models to handle complex instructions.
<p align="center" width="60%">
<a ><img src="imgs/windiff.png" alt="WizardLM" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a>
</p>

### Citation

Please cite the repo if you use the data or code in this repo.

```
@misc{xu2023wizardlm,
      title={WizardLM: Empowering Large Language Models to Follow Complex Instructions},
      author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
      year={2023},
      eprint={2304.12244},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
## Disclaimer

The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of WizardLM is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.

<!-- original-model-card end -->