TheBloke commited on
Commit
e6fed70
1 Parent(s): 2f14239

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +555 -0
README.md ADDED
@@ -0,0 +1,555 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/WizardLM/WizardLM-13B-V1.0
3
+ inference: false
4
+ license: other
5
+ model_creator: WizardLM
6
+ model_name: WizardLM 13B 1.0
7
+ model_type: llama
8
+ prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
9
+ The assistant gives helpful, detailed, and polite answers to the user''s questions.
10
+ USER: {prompt} ASSISTANT:
11
+
12
+ '
13
+ quantized_by: TheBloke
14
+ ---
15
+
16
+ <!-- header start -->
17
+ <!-- 200823 -->
18
+ <div style="width: auto; margin-left: auto; margin-right: auto">
19
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
20
+ </div>
21
+ <div style="display: flex; justify-content: space-between; width: 100%;">
22
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
23
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
24
+ </div>
25
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
26
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
27
+ </div>
28
+ </div>
29
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
30
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
31
+ <!-- header end -->
32
+
33
+ # WizardLM 13B 1.0 - GGUF
34
+ - Model creator: [WizardLM](https://huggingface.co/WizardLM)
35
+ - Original model: [WizardLM 13B 1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0)
36
+
37
+ <!-- description start -->
38
+ ## Description
39
+
40
+ This repo contains GGUF format model files for [WizardLM's WizardLM 13B 1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0).
41
+
42
+ <!-- description end -->
43
+ <!-- README_GGUF.md-about-gguf start -->
44
+ ### About GGUF
45
+
46
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
47
+
48
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
49
+
50
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
51
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
52
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
53
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
54
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
55
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
56
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
57
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
58
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
59
+
60
+ <!-- README_GGUF.md-about-gguf end -->
61
+ <!-- repositories-available start -->
62
+ ## Repositories available
63
+
64
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/WizardLM-13B-1.0-AWQ)
65
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GPTQ)
66
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF)
67
+ * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/wizardLM-13B-1.0-fp16)
68
+ <!-- repositories-available end -->
69
+
70
+ <!-- prompt-template start -->
71
+ ## Prompt template: Vicuna
72
+
73
+ ```
74
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
75
+
76
+ ```
77
+
78
+ <!-- prompt-template end -->
79
+ <!-- licensing start -->
80
+ ## Licensing
81
+
82
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
83
+
84
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
85
+
86
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [WizardLM's WizardLM 13B 1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0).
87
+ <!-- licensing end -->
88
+ <!-- compatibility_gguf start -->
89
+ ## Compatibility
90
+
91
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
92
+
93
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
94
+
95
+ ## Explanation of quantisation methods
96
+ <details>
97
+ <summary>Click to see details</summary>
98
+
99
+ The new methods available are:
100
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
101
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
102
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
103
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
104
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
105
+
106
+ Refer to the Provided Files table below to see what files use which methods, and how.
107
+ </details>
108
+ <!-- compatibility_gguf end -->
109
+
110
+ <!-- README_GGUF.md-provided-files start -->
111
+ ## Provided files
112
+
113
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
114
+ | ---- | ---- | ---- | ---- | ---- | ----- |
115
+ | [wizardLM-13B-1.0.Q2_K.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
116
+ | [wizardLM-13B-1.0.Q3_K_S.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
117
+ | [wizardLM-13B-1.0.Q3_K_M.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
118
+ | [wizardLM-13B-1.0.Q3_K_L.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
119
+ | [wizardLM-13B-1.0.Q4_0.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
120
+ | [wizardLM-13B-1.0.Q4_K_S.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
121
+ | [wizardLM-13B-1.0.Q4_K_M.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
122
+ | [wizardLM-13B-1.0.Q5_0.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
123
+ | [wizardLM-13B-1.0.Q5_K_S.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
124
+ | [wizardLM-13B-1.0.Q5_K_M.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
125
+ | [wizardLM-13B-1.0.Q6_K.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
126
+ | [wizardLM-13B-1.0.Q8_0.gguf](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF/blob/main/wizardLM-13B-1.0.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
127
+
128
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
129
+
130
+
131
+
132
+ <!-- README_GGUF.md-provided-files end -->
133
+
134
+ <!-- README_GGUF.md-how-to-download start -->
135
+ ## How to download GGUF files
136
+
137
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
138
+
139
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
140
+ - LM Studio
141
+ - LoLLMS Web UI
142
+ - Faraday.dev
143
+
144
+ ### In `text-generation-webui`
145
+
146
+ Under Download Model, you can enter the model repo: TheBloke/WizardLM-13B-1.0-GGUF and below it, a specific filename to download, such as: wizardLM-13B-1.0.q4_K_M.gguf.
147
+
148
+ Then click Download.
149
+
150
+ ### On the command line, including multiple files at once
151
+
152
+ I recommend using the `huggingface-hub` Python library:
153
+
154
+ ```shell
155
+ pip3 install huggingface-hub>=0.17.1
156
+ ```
157
+
158
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
159
+
160
+ ```shell
161
+ huggingface-cli download TheBloke/WizardLM-13B-1.0-GGUF wizardLM-13B-1.0.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
162
+ ```
163
+
164
+ <details>
165
+ <summary>More advanced huggingface-cli download usage</summary>
166
+
167
+ You can also download multiple files at once with a pattern:
168
+
169
+ ```shell
170
+ huggingface-cli download TheBloke/WizardLM-13B-1.0-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
171
+ ```
172
+
173
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
174
+
175
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
176
+
177
+ ```shell
178
+ pip3 install hf_transfer
179
+ ```
180
+
181
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
182
+
183
+ ```shell
184
+ HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WizardLM-13B-1.0-GGUF wizardLM-13B-1.0.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
185
+ ```
186
+
187
+ Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
188
+ </details>
189
+ <!-- README_GGUF.md-how-to-download end -->
190
+
191
+ <!-- README_GGUF.md-how-to-run start -->
192
+ ## Example `llama.cpp` command
193
+
194
+ Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
195
+
196
+ ```shell
197
+ ./main -ngl 32 -m wizardLM-13B-1.0.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:"
198
+ ```
199
+
200
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
201
+
202
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
203
+
204
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
205
+
206
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
207
+
208
+ ## How to run in `text-generation-webui`
209
+
210
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
211
+
212
+ ## How to run from Python code
213
+
214
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
215
+
216
+ ### How to load this model from Python using ctransformers
217
+
218
+ #### First install the package
219
+
220
+ ```bash
221
+ # Base ctransformers with no GPU acceleration
222
+ pip install ctransformers>=0.2.24
223
+ # Or with CUDA GPU acceleration
224
+ pip install ctransformers[cuda]>=0.2.24
225
+ # Or with ROCm GPU acceleration
226
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
227
+ # Or with Metal GPU acceleration for macOS systems
228
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
229
+ ```
230
+
231
+ #### Simple example code to load one of these GGUF models
232
+
233
+ ```python
234
+ from ctransformers import AutoModelForCausalLM
235
+
236
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
237
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/WizardLM-13B-1.0-GGUF", model_file="wizardLM-13B-1.0.q4_K_M.gguf", model_type="llama", gpu_layers=50)
238
+
239
+ print(llm("AI is going to"))
240
+ ```
241
+
242
+ ## How to use with LangChain
243
+
244
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
245
+
246
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
247
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
248
+
249
+ <!-- README_GGUF.md-how-to-run end -->
250
+
251
+ <!-- footer start -->
252
+ <!-- 200823 -->
253
+ ## Discord
254
+
255
+ For further support, and discussions on these models and AI in general, join us at:
256
+
257
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
258
+
259
+ ## Thanks, and how to contribute
260
+
261
+ Thanks to the [chirper.ai](https://chirper.ai) team!
262
+
263
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
264
+
265
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
266
+
267
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
268
+
269
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
270
+
271
+ * Patreon: https://patreon.com/TheBlokeAI
272
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
273
+
274
+ **Special thanks to**: Aemon Algiz.
275
+
276
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
277
+
278
+
279
+ Thank you to all my generous patrons and donaters!
280
+
281
+ And thank you again to a16z for their generous grant.
282
+
283
+ <!-- footer end -->
284
+
285
+ <!-- original-model-card start -->
286
+ # Original model card: WizardLM's WizardLM 13B 1.0
287
+
288
+
289
+ <!-- header start -->
290
+ <div style="width: 100%;">
291
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
292
+ </div>
293
+ <div style="display: flex; justify-content: space-between; width: 100%;">
294
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
295
+ <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
296
+ </div>
297
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
298
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
299
+ </div>
300
+ </div>
301
+ <!-- header end -->
302
+
303
+ # WizardLM 13B 1.0 fp16
304
+
305
+ These files are fp16 unquantised format model files for [WizardLM 13B 1.0](https://huggingface.co/victor123/WizardLM-13B-1.0).
306
+
307
+ It is the result of merging the deltas provided in the above repo.
308
+
309
+ ## Need support? Want to discuss? I now have a Discord!
310
+
311
+ Join me at: https://discord.gg/UBgz4VXf
312
+
313
+ ## Other repositories available
314
+
315
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GPTQ)
316
+ * [4-bit, 5-bit and 8-bit GGML models for CPU(+GPU) inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGML)
317
+ * [Merged, unquantised fp16 model in HF format](https://huggingface.co/TheBloke/WizardLM-13B-1.0-HF)
318
+
319
+ ## Prompt Template
320
+
321
+ ```
322
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
323
+ USER: prompt goes here
324
+ ASSISTANT:
325
+ ```
326
+
327
+ <!-- footer start -->
328
+ ## Discord
329
+
330
+ For further support, and discussions on these models and AI in general, join us at:
331
+
332
+ [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
333
+
334
+ ## Thanks, and how to contribute.
335
+
336
+ Thanks to the [chirper.ai](https://chirper.ai) team!
337
+
338
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
339
+
340
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
341
+
342
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
343
+
344
+ * Patreon: https://patreon.com/TheBlokeAI
345
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
346
+
347
+ **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
348
+
349
+ Thank you to all my generous patrons and donaters!
350
+ <!-- footer end -->
351
+
352
+ # Original model card
353
+
354
+ ## WizardLM: An Instruction-following LLM Using Evol-Instruct
355
+ Empowering Large Pre-Trained Language Models to Follow Complex Instructions
356
+
357
+ <p align="center" width="100%">
358
+ <a ><img src="imgs/WizardLM.png" alt="WizardLM" style="width: 20%; min-width: 300px; display: block; margin: auto;"></a>
359
+ </p>
360
+
361
+ [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
362
+ [![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE)
363
+ [![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/release/python-390/)
364
+
365
+ ## News
366
+
367
+ At present, our core contributors are preparing the **33B** version and we expect to empower WizardLM with the ability to perform instruction evolution itself, aiming to evolve your specific data at a low cost.
368
+
369
+ - 🔥 We released **13B** version of **WizardLM** trained with **250k** evolved instructions (from ShareGPT). Checkout the [Demo_13B](https://a6d4f31b5a1ee33f.gradio.app/), [Demo_13B_bak](https://e79c80d2c2379e77.gradio.app) and the GPT-4 evaluation. Please download our delta model at the following [link](https://huggingface.co/victor123/WizardLM-13B-1.0).
370
+ - 🔥 We released **7B** version of **WizardLM** trained with **70k** evolved instructions (from Alpaca data). Checkout the [paper](https://arxiv.org/abs/2304.12244) and [Demo_7B](https://f195ccdce69a86d5.gradio.app) , [Demo_7B_bak](https://ce25bd0feced0f77.gradio.app)
371
+ - &#x1F4E3; We are looking for highly motivated students to join us as interns to create more intelligent AI together. Please contact [email protected]
372
+
373
+ <!-- Although on our **complexity-balanced test set**, **WizardLM-7B has more cases that are preferred by human labelers than ChatGPT** in the high-complexity instructions (difficulty level >= 8), it still lags behind ChatGPT on the entire test set, and we also consider WizardLM to still be in a **baby state**. This repository will **continue to improve WizardLM**, train on larger scales, add more training data, and innovate more advanced large-model training methods. -->
374
+
375
+ <b>Note for 13B model usage:</b> To obtain results **identical to our demo**, please strictly follow the prompts and invocation methods provided in the **"src/infer_wizardlm13b.py"** to use our 13B model for inference. Unlike the 7B model, the 13B model adopts the prompt format from Vicuna and supports **multi-turn** conversation.
376
+
377
+ <b>Note for demo usage:</b> We only recommend using **English** to experience our model. Support for other languages will be introduced in the future. The demo currently only supports **single-turn** conversation.
378
+
379
+ ### GPT-4 automatic evaluation
380
+
381
+ We adopt the automatic evaluation framework based on GPT-4 proposed by FastChat to assess the performance of chatbot models. As shown in the following figure, WizardLM-13B achieved better results than Vicuna-13b.
382
+ <p align="center" width="100%">
383
+ <a ><img src="imgs/WizarLM13b-GPT4.png" alt="WizardLM" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
384
+ </p>
385
+
386
+ ### WizardLM-13B performance on different skills.
387
+
388
+ The following figure compares WizardLM-13B and ChatGPT’s skill on Evol-Instruct testset. The result indicates that WizardLM-13B achieves 89.1% of ChatGPT’s performance on average, with almost 100% (or more than) capacity on 10 skills, and more than 90% capacity on 22 skills.
389
+
390
+ <p align="center" width="100%">
391
+ <a ><img src="imgs/evol-testset_skills-13b.png" alt="WizardLM" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
392
+ </p>
393
+
394
+ ## Call for Feedbacks
395
+ We welcome everyone to use your professional and difficult instructions to evaluate WizardLM, and show us examples of poor performance and your suggestions in the [issue discussion](https://github.com/nlpxucan/WizardLM/issues) area. We are focusing on improving the Evol-Instruct now and hope to relieve existing weaknesses and issues in the the next version of WizardLM. After that, we will open the code and pipeline of up-to-date Evol-Instruct algorithm and work with you together to improve it.
396
+
397
+ ## Unofficial Video Introductions
398
+ Thanks to the enthusiastic friends, their video introductions are more lively and interesting.
399
+ 1. [GET WizardLM NOW! 7B LLM KING That Can Beat ChatGPT! I'm IMPRESSED!](https://www.youtube.com/watch?v=SaJ8wyKMBds)
400
+ 2. [WizardLM: Enhancing Large Language Models to Follow Complex Instructions](https://www.youtube.com/watch?v=I6sER-qivYk)
401
+
402
+ ## Case Show
403
+ We just sample some cases to demonstrate the performance of WizardLM and ChatGPT on data of varying difficulty, and the details pls refer [Case Show](https://github.com/nlpxucan/WizardLM/blob/main/src/case_show.md).
404
+
405
+ ## Overview of Evol-Instruct
406
+
407
+ [Evol-Instruct](https://github.com/nlpxucan/evol-instruct) is a novel method using LLMs instead of humans to automatically mass-produce open-domain instructions of various difficulty levels and skills range, to improve the performance of LLMs.
408
+
409
+ <p align="center" width="100%">
410
+ <a ><img src="imgs/git_overall.png" alt="WizardLM" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
411
+ </p>
412
+
413
+ <p align="center" width="100%">
414
+ <a ><img src="imgs/git_running.png" alt="WizardLM" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
415
+ </p>
416
+
417
+ ## Contents
418
+
419
+ 1. [Online Demo](#online-demo)
420
+
421
+ 2. [Training Data](#training-data)
422
+
423
+ 3. [WizardLM Weights](#wizardlm-weights)
424
+
425
+ 4. [Fine-tuning](#fine-tuning)
426
+
427
+ 5. [Distributed Fine-tuning](#distributed-Fine-tuning)
428
+
429
+ 6. [Inference](#inference)
430
+
431
+ 7. [Evaluation](#evaluation)
432
+
433
+ 8. [Citation](#citation)
434
+
435
+ 9. [Disclaimer](#disclaimer)
436
+
437
+ ## Online Demo
438
+
439
+ We will provide our latest models for you to try for as long as possible. If you find a link is not working, please try another one. At the same time, please try as many **real-world** and **challenging** problems that you encounter in your work and life as possible. We will continue to evolve our models with your feedbacks.
440
+
441
+ [Demo Link](https://011fc8477ad734d7.gradio.app)
442
+
443
+ [Demo Backup 1](https://1825e531c43a23c7.gradio.app)
444
+
445
+
446
+
447
+
448
+ ## Training Data
449
+
450
+ [`alpaca_evol_instruct_70k.json`](https://huggingface.co/datasets/victor123/evol_instruct_70k) contains 70K instruction-following data generated from Evol-Instruct. We used it for fine-tuning the WizardLM model.
451
+ This JSON file is a list of dictionaries, each dictionary contains the following fields:
452
+
453
+ - `instruction`: `str`, describes the task the model should perform. Each of the 70K instructions is unique.
454
+ - `output`: `str`, the answer to the instruction as generated by `gpt-3.5-turbo`.
455
+
456
+
457
+
458
+ ## WizardLM Weights
459
+ We release [WizardLM] weights as delta weights to comply with the LLaMA model license.
460
+ You can add our delta to the original LLaMA weights to obtain the WizardLM weights. Instructions:
461
+ 1. Get the original LLaMA weights in the huggingface format by following the instructions [here](https://huggingface.co/docs/transformers/main/model_doc/llama).
462
+ 2. Please download our delta model at the following [link](https://huggingface.co/victor123/WizardLM)
463
+ 3. Use the following scripts to get WizardLM weights by applying our delta:
464
+ ```
465
+ python src/weight_diff_wizard.py recover --path_raw <path_to_step_1_dir> --path_diff <path_to_step_2_dir> --path_tuned <path_to_store_recovered_weights>
466
+ ```
467
+
468
+ ## Fine-tuning
469
+
470
+ We fine-tune WizardLM using code from [Llama-X](https://github.com/AetherCortex/Llama-X).
471
+ We fine-tune LLaMA-7B and LLaMA-13B with the following hyperparameters:
472
+
473
+ | Hyperparameter | LLaMA-7B | LLaMA-13B|
474
+ |----------------|----------|----------|
475
+ | Batch size | 64 | 384 |
476
+ | Learning rate | 2e-5 | 2e-5 |
477
+ | Epochs | 3 | 3 |
478
+ | Max length | 2048 | 2048 |
479
+ | Warmup step | 2 | 50 |
480
+ | LR scheduler | cosine | cosine |
481
+
482
+ To reproduce our fine-tuning of WizardLM, please follow the following steps:
483
+ 1. According to the instructions of [Llama-X](https://github.com/AetherCortex/Llama-X), install the environment, download the training code, and deploy.
484
+ 2. Replace the train.py with the train_freeform.py in our repo(src/train_freeform.py)
485
+ 3. Execute the following training command:
486
+ ```bash
487
+ deepspeed train_freeform.py \
488
+ --model_name_or_path /path/to/llama-7B/hf \
489
+ --data_path /path/to/alpaca_evol_instruct_70k.json \
490
+ --output_dir /path/to/wizardlm-7B/hf/ft \
491
+ --num_train_epochs 3 \
492
+ --model_max_length 2048 \
493
+ --per_device_train_batch_size 8 \
494
+ --per_device_eval_batch_size 1 \
495
+ --gradient_accumulation_steps 1 \
496
+ --evaluation_strategy "no" \
497
+ --save_strategy "steps" \
498
+ --save_steps 800 \
499
+ --save_total_limit 3 \
500
+ --learning_rate 2e-5 \
501
+ --warmup_steps 2 \
502
+ --logging_steps 2 \
503
+ --lr_scheduler_type "cosine" \
504
+ --report_to "tensorboard" \
505
+ --gradient_checkpointing True \
506
+ --deepspeed configs/deepspeed_config.json \
507
+ --fp16 True
508
+ ```
509
+
510
+ ## Distributed Fine-tuning
511
+ See [Distributed Fine-tuning](./doc/distributed_finetune.md)
512
+
513
+ ## Inference
514
+
515
+ We provide the decoding script for WizardLM, which reads a input file and generates corresponding responses for each sample, and finally consolidates them into an output file.
516
+
517
+ You can specify `base_model`, `input_data_path` and `output_data_path` in src\inference_wizardlm.py to set the decoding model, path of input file and path of output file.
518
+ The decoding command:
519
+ ```
520
+ python src\inference_wizardlm.py
521
+ ```
522
+
523
+ ### Evaluation
524
+
525
+ To evaluate Wizard, we conduct human evaluation on the inputs from our human instruct evaluation set [`WizardLM_testset.jsonl`](./data/WizardLM_testset.jsonl) . This evaluation set was collected by the authors and covers a diverse list of user-oriented instructions including difficult Coding Generation & Debugging, Math, Reasoning, Complex Formats, Academic Writing, Extensive Disciplines, and so on. We performed a blind pairwise comparison between Wizard and baselines. Specifically, we recruit 10 well-educated annotators to rank the models from 1 to 5 on relevance, knowledgeable, reasoning, calculation and accuracy.
526
+
527
+ WizardLM achieved significantly better results than Alpaca and Vicuna-7b.
528
+ <p align="center" width="60%">
529
+ <a ><img src="imgs/win.png" alt="WizardLM" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a>
530
+ </p>
531
+
532
+ In the high-difficulty section of our test set (difficulty level >= 8), WizardLM even outperforms ChatGPT, with a win rate 7.9% larger than Chatgpt (42.9% vs. 35.0%). This indicates that our method can significantly improve the ability of large language models to handle complex instructions.
533
+ <p align="center" width="60%">
534
+ <a ><img src="imgs/windiff.png" alt="WizardLM" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a>
535
+ </p>
536
+
537
+ ### Citation
538
+
539
+ Please cite the repo if you use the data or code in this repo.
540
+
541
+ ```
542
+ @misc{xu2023wizardlm,
543
+ title={WizardLM: Empowering Large Language Models to Follow Complex Instructions},
544
+ author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
545
+ year={2023},
546
+ eprint={2304.12244},
547
+ archivePrefix={arXiv},
548
+ primaryClass={cs.CL}
549
+ }
550
+ ```
551
+ ## Disclaimer
552
+
553
+ The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of WizardLM is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.
554
+
555
+ <!-- original-model-card end -->