Edit model card
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


13B Legerdemain L2 - GGUF

Description

This repo contains GGUF format model files for CalderaAI's 13B Legerdemain L2.

About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.

Here is an incomplate list of clients and libraries that are known to support GGUF:

  • llama.cpp. The source project for GGUF. Offers a CLI and a server option.
  • text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
  • KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
  • LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
  • LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
  • Faraday.dev, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
  • ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
  • llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
  • candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.

Repositories available

Prompt template: Alpaca

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:

Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit d0cee0d36d5be95a0d9088b674dbb27354107221

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

Explanation of quantisation methods

Click to see details

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
13b-legerdemain-l2.Q2_K.gguf Q2_K 2 5.43 GB 7.93 GB smallest, significant quality loss - not recommended for most purposes
13b-legerdemain-l2.Q3_K_S.gguf Q3_K_S 3 5.66 GB 8.16 GB very small, high quality loss
13b-legerdemain-l2.Q3_K_M.gguf Q3_K_M 3 6.34 GB 8.84 GB very small, high quality loss
13b-legerdemain-l2.Q3_K_L.gguf Q3_K_L 3 6.93 GB 9.43 GB small, substantial quality loss
13b-legerdemain-l2.Q4_0.gguf Q4_0 4 7.37 GB 9.87 GB legacy; small, very high quality loss - prefer using Q3_K_M
13b-legerdemain-l2.Q4_K_S.gguf Q4_K_S 4 7.41 GB 9.91 GB small, greater quality loss
13b-legerdemain-l2.Q4_K_M.gguf Q4_K_M 4 7.87 GB 10.37 GB medium, balanced quality - recommended
13b-legerdemain-l2.Q5_0.gguf Q5_0 5 8.97 GB 11.47 GB legacy; medium, balanced quality - prefer using Q4_K_M
13b-legerdemain-l2.Q5_K_S.gguf Q5_K_S 5 8.97 GB 11.47 GB large, low quality loss - recommended
13b-legerdemain-l2.Q5_K_M.gguf Q5_K_M 5 9.23 GB 11.73 GB large, very low quality loss - recommended
13b-legerdemain-l2.Q6_K.gguf Q6_K 6 10.68 GB 13.18 GB very large, extremely low quality loss
13b-legerdemain-l2.Q8_0.gguf Q8_0 8 13.83 GB 16.33 GB very large, extremely low quality loss - not recommended

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to download GGUF files

Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:

  • LM Studio
  • LoLLMS Web UI
  • Faraday.dev

In text-generation-webui

Under Download Model, you can enter the model repo: TheBloke/13B-Legerdemain-L2-GGUF and below it, a specific filename to download, such as: 13b-legerdemain-l2.q4_K_M.gguf.

Then click Download.

On the command line, including multiple files at once

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub>=0.17.1

Then you can download any individual model file to the current directory, at high speed, with a command like this:

huggingface-cli download TheBloke/13B-Legerdemain-L2-GGUF 13b-legerdemain-l2.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
More advanced huggingface-cli download usage

You can also download multiple files at once with a pattern:

huggingface-cli download TheBloke/13B-Legerdemain-L2-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/13B-Legerdemain-L2-GGUF 13b-legerdemain-l2.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False

Windows CLI users: Use set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 before running the download command.

Example llama.cpp command

Make sure you are using llama.cpp from commit d0cee0d36d5be95a0d9088b674dbb27354107221 or later.

./main -ngl 32 -m 13b-legerdemain-l2.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change -c 4096 to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp.md.

How to run from Python code

You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries.

How to load this model from Python using ctransformers

First install the package

# Base ctransformers with no GPU acceleration
pip install ctransformers>=0.2.24
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]>=0.2.24
# Or with ROCm GPU acceleration
CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems
CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers

Simple example code to load one of these GGUF models

from ctransformers import AutoModelForCausalLM

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/13B-Legerdemain-L2-GGUF", model_file="13b-legerdemain-l2.q4_K_M.gguf", model_type="llama", gpu_layers=50)

print(llm("AI is going to"))

How to use with LangChain

Here's guides on using llama-cpp-python or ctransformers with LangChain:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: CalderaAI's 13B Legerdemain L2

13B-Legerdemain-L2

13B-Legerdemain-L2 is the first model merge of its kind in a series of LLaMaV2 models mixed using a custom script built in-house by CalderaAI called Model-REVOLVER. M-REVOLVER is also the first in a series of custom scripts based on the concept of mixtuning - not only does the end user have contol over which models are mixed and their percentages on a per-layer basis, we tackle the problem of overcomplexity that arises from such a level of control; this model is the first of its series.

The Model-REVOLVER Process Designed by CalderaAI

M-REVOLVER (Rapid Evolution Via Optimized-List Viewer Evaluated Response) Per-layer merging between parent models is a nebulous inexact science, and therefore impractical to most users despite the raw power it offers. We propose an entirely new approach that gives the user a clear looking glass into the impact vastly different layer merge configurations between selected parent models of their choice will have on the potential offspring model - especially its inherited behaviors. We've developed solution MK.1 - A cyclic random pattern search in place that determines all layer merge ratios, combines test models, infers prompt completions, and deletes a prototype after data collection is saved. When the cyclic system has completed its entire run, nothing is left but the telemetry collected along with the cycle and layer merge ratios from every single prototype merge. This data is then used to empower the user to choose which offspring is most fit to their desired outcome. This final step is only initiated when all necessary data has been aggregated from all assembled-tested-erased prototypes sampled in the search space.

From here, the user is provided five 300 token prompt completions from each and every offspring contender that was created and tested during the cyclic process. The user simply browses each prototype's series of responses and selects their desired outcome model by entering the cycle number associated with the prompt completions they feel best suits their vision. That model is then instantly repatriated into the official offspring of its parent models and tokenizer files found to be most relevant are instantly auto-copied from the parent model dir to the offspring.

That's it - the user instantly has a complete model based on the behavior they decided on, suggested from one of many potentials; all with their own unique trait inheritence thanks to layer merge auto randomization inside an ordered system. One more thing - the user not only selects how many cycles to run, the user can edit prompts.txt which the system reads as a single prompt - this means if the user desires to use any multiline instruct format to observe all potential model outcomes from instruct, or desires simply their own prompt, it's up to them.. simply works.

Link to GitHub for M-REVOLVER are at the end of the model card. More advanced MergeTech toolsets and merge techniques are currently under internal testing and development by Caldera.

13B-Legerdemain-L2 Use

13B-Legerdemain-L2 is capable of following Alpaca instructions however it seems far more receptive to the by-the-book method as seen here:

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:
{New Line}

The primary model of choice for this model was a story-only model called Holodeck by KoboldAI. Traits preserved seem to be detailed descriptiveness, verbosity, and characters with personality. The two other models selected were 13B-Nous-Hermes by NousResearch and 13B-orca-8k-3319 by OpenAssistant. I began the process by providing an incredibly obscene prompt and simply ignored each and every guardrail or censorship laden prompt completion and accepted the offensive ones in turn - intent wasn't to be crass but trigger censorship parts of the network to test if it's possible to completely undermine them. Second pass with offspring model and Orca was a simple milquetoast prompt to gauge vocabulary, word flow, and intelligence as I selected the most fit in that category. Result model seems a bit of a curiosity - different samplers and even a different UI (as I went from TGUI to KoboldAI) seem to uncover different facets of behavior. Godlike preset with Alpaca Instruct in TGUI worked fine. In KoboldAI some tweaking was necessary to get the same experience. If you choose to test this model, have fun - it's got a mind of its own.

Model-REVOLVER Git:

https://github.com/Digitous/ModelREVOLVER

Downloads last month
115
GGUF
Model size
13B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/13B-Legerdemain-L2-GGUF

Quantized
(3)
this model