ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("TharushiDinushika/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
'The CIA appears to recognize the breadth of its proposed interpretation in this regard, \ncontending in multiple places that “it is not clear that there is any practical difference between \nthe organization and functions of CIA personnel and those of the Agency” since “the CIA is \ncomposed of and acts entirely through its employees.” See Def.’s First 443 Reply at 9; see also',
'What does the CIA contend about the difference between the organization and functions of its personnel and those of the Agency?',
'What does 5 C.F.R. § 340.403(a) require regarding work schedule changes?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5688 |
cosine_accuracy@3 | 0.609 |
cosine_accuracy@5 | 0.694 |
cosine_accuracy@10 | 0.7635 |
cosine_precision@1 | 0.5688 |
cosine_precision@3 | 0.5353 |
cosine_precision@5 | 0.4117 |
cosine_precision@10 | 0.2423 |
cosine_recall@1 | 0.2027 |
cosine_recall@3 | 0.5209 |
cosine_recall@5 | 0.6452 |
cosine_recall@10 | 0.7558 |
cosine_ndcg@10 | 0.6689 |
cosine_mrr@10 | 0.6136 |
cosine_map@100 | 0.6535 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5611 |
cosine_accuracy@3 | 0.6074 |
cosine_accuracy@5 | 0.6847 |
cosine_accuracy@10 | 0.7512 |
cosine_precision@1 | 0.5611 |
cosine_precision@3 | 0.5307 |
cosine_precision@5 | 0.4087 |
cosine_precision@10 | 0.238 |
cosine_recall@1 | 0.199 |
cosine_recall@3 | 0.514 |
cosine_recall@5 | 0.6403 |
cosine_recall@10 | 0.7421 |
cosine_ndcg@10 | 0.6583 |
cosine_mrr@10 | 0.6053 |
cosine_map@100 | 0.6441 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4977 |
cosine_accuracy@3 | 0.5641 |
cosine_accuracy@5 | 0.6507 |
cosine_accuracy@10 | 0.711 |
cosine_precision@1 | 0.4977 |
cosine_precision@3 | 0.4822 |
cosine_precision@5 | 0.3839 |
cosine_precision@10 | 0.2249 |
cosine_recall@1 | 0.1753 |
cosine_recall@3 | 0.4656 |
cosine_recall@5 | 0.5996 |
cosine_recall@10 | 0.6996 |
cosine_ndcg@10 | 0.6086 |
cosine_mrr@10 | 0.5505 |
cosine_map@100 | 0.5948 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4436 |
cosine_accuracy@3 | 0.4853 |
cosine_accuracy@5 | 0.5842 |
cosine_accuracy@10 | 0.6677 |
cosine_precision@1 | 0.4436 |
cosine_precision@3 | 0.4209 |
cosine_precision@5 | 0.3366 |
cosine_precision@10 | 0.2114 |
cosine_recall@1 | 0.1574 |
cosine_recall@3 | 0.4083 |
cosine_recall@5 | 0.5242 |
cosine_recall@10 | 0.6562 |
cosine_ndcg@10 | 0.5561 |
cosine_mrr@10 | 0.4933 |
cosine_map@100 | 0.5379 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3338 |
cosine_accuracy@3 | 0.3756 |
cosine_accuracy@5 | 0.4699 |
cosine_accuracy@10 | 0.5595 |
cosine_precision@1 | 0.3338 |
cosine_precision@3 | 0.3205 |
cosine_precision@5 | 0.2634 |
cosine_precision@10 | 0.1764 |
cosine_recall@1 | 0.1209 |
cosine_recall@3 | 0.3135 |
cosine_recall@5 | 0.414 |
cosine_recall@10 | 0.5399 |
cosine_ndcg@10 | 0.4453 |
cosine_mrr@10 | 0.3835 |
cosine_map@100 | 0.4345 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 16.7 tokens
- max: 46 tokens
- min: 26 tokens
- mean: 97.29 tokens
- max: 156 tokens
- Samples:
anchor positive What is a typical and appropriate method for deciding FOIA cases?
some other failure to abide by the terms of the FOIA, and not merely isolated mistakes by agency
officials.” Payne, 837 F.2d at 491.
B.
Summary Judgment
“‘FOIA cases typically and appropriately are decided on motions for summary
judgment.’” Georgacarakos v. FBI, 908 F. Supp. 2d 176, 180 (D.D.C. 2012) (quoting DefendersWho had the burden to authenticate the video?
fairly and accurately depicted the shooting.15 And, although the burden was on the State
to authenticate the video, it is worth observing that, while Mr. Mooney’s counsel argued in
the circuit court that “there’s no way to know if that video’s been altered[,]” Mr. Mooney
did not allege that the video was altered or tampered with.¿Qué no logró probar Salgueiro?
Salgueiro no logró probar su causa de acción. Si bien es cierto que,
la parte apelante no logró persuadirnos de que el trabajo audiovisual
realizado por el señor Friger Salgueiro –incluyendo aquel en que
aparecía su propia imagen– fuera hecho por encargo, la parte
apelada tampoco logró establecer mediante prueba a esos efectos, - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 2lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8791 | 10 | 49.1647 | - | - | - | - | - |
1.0 | 12 | - | 0.6588 | 0.6507 | 0.6034 | 0.5468 | 0.4348 |
1.7033 | 20 | 30.5671 | - | - | - | - | - |
1.8791 | 22 | - | 0.6689 | 0.6583 | 0.6086 | 0.5561 | 0.4453 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for TharushiDinushika/modernbert-embed-base-legal-matryoshka-2
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.569
- Cosine Accuracy@3 on dim 768self-reported0.609
- Cosine Accuracy@5 on dim 768self-reported0.694
- Cosine Accuracy@10 on dim 768self-reported0.764
- Cosine Precision@1 on dim 768self-reported0.569
- Cosine Precision@3 on dim 768self-reported0.535
- Cosine Precision@5 on dim 768self-reported0.412
- Cosine Precision@10 on dim 768self-reported0.242
- Cosine Recall@1 on dim 768self-reported0.203
- Cosine Recall@3 on dim 768self-reported0.521