SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Technocoloredgeek/midterm-finetuned-embedding")
# Run inference
sentences = [
'How does the framework address the concerns related to the rapid innovation and changing definitions of AI systems?',
'SECTION TITLE\nApplying The Blueprint for an AI Bill of Rights \nWhile many of the concerns addressed in this framework derive from the use of AI, the technical \ncapabilities and specific definitions of such systems change with the speed of innovation, and the potential \nharms of their use occur even with less technologically sophisticated tools. Thus, this framework uses a two-\npart test to determine what systems are in scope. This framework applies to (1) automated systems that (2)',
'or inequality. Assessment could include both qualitative and quantitative evaluations of the system. This equity assessment should also be considered a core part of the goals of the consultation conducted as part of the safety and efficacy review.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9271 |
cosine_accuracy@3 | 0.9948 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9271 |
cosine_precision@3 | 0.3316 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9271 |
cosine_recall@3 | 0.9948 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9693 |
cosine_mrr@10 | 0.9588 |
cosine_map@100 | 0.9588 |
dot_accuracy@1 | 0.9271 |
dot_accuracy@3 | 0.9948 |
dot_accuracy@5 | 1.0 |
dot_accuracy@10 | 1.0 |
dot_precision@1 | 0.9271 |
dot_precision@3 | 0.3316 |
dot_precision@5 | 0.2 |
dot_precision@10 | 0.1 |
dot_recall@1 | 0.9271 |
dot_recall@3 | 0.9948 |
dot_recall@5 | 1.0 |
dot_recall@10 | 1.0 |
dot_ndcg@10 | 0.9693 |
dot_mrr@10 | 0.9588 |
dot_map@100 | 0.9588 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,539 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 12 tokens
- mean: 23.91 tokens
- max: 46 tokens
- min: 3 tokens
- mean: 84.9 tokens
- max: 335 tokens
- Samples:
sentence_0 sentence_1 What are confabulations in the context of generative AI outputs, and how do they arise from the design of generative models?
Confabulations can occur across GAI outputs and contexts .9,10 Confabulations are a natural result of the
way generative models are designed : they generate outputs that approximate the statistical distribution
of their training data ; for example, LLMs predict the next token or word in a sentence or phrase . While
such statistical prediction can produce factual ly accurate and consistent outputs , it can also produceWhat roles do Rashida Richardson and Karen Kornbluh hold in relation to technology and democracy as mentioned in the context?
products, advanced platforms and services, “Internet of Things” (IoT) devices, and smart city products and services.
Welcome :
•Rashida Richardson, Senior Policy Advisor for Data and Democracy, White House Office of Science andTechnology Policy
•Karen Kornbluh, Senior Fellow and Director of the Digital Innovation and Democracy Initiative, GermanMarshall Fund
Moderator :What are some best practices that entities should follow to ensure privacy and security in automated systems?
Privacy-preserving security. Entities creating, using, or governing automated systems should follow privacy and security best practices designed to ensure data and metadata do not leak beyond the specific consented use case. Best practices could include using privacy-enhancing cryptography or other types of privacy-enhancing technologies or fine-grained permissions and access control mechanisms, along with conventional system security protocols.
33 - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 20per_device_eval_batch_size
: 20num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 20per_device_eval_batch_size
: 20per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
0.6494 | 50 | 0.9436 |
1.0 | 77 | 0.9501 |
1.2987 | 100 | 0.9440 |
1.9481 | 150 | 0.9523 |
2.0 | 154 | 0.9488 |
2.5974 | 200 | 0.9549 |
3.0 | 231 | 0.9536 |
3.2468 | 250 | 0.9562 |
3.8961 | 300 | 0.9562 |
4.0 | 308 | 0.9562 |
4.5455 | 350 | 0.9562 |
5.0 | 385 | 0.9588 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Technocoloredgeek/midterm-finetuned-embedding
Base model
Snowflake/snowflake-arctic-embed-mSpace using Technocoloredgeek/midterm-finetuned-embedding 1
Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.927
- Cosine Accuracy@3 on Unknownself-reported0.995
- Cosine Accuracy@5 on Unknownself-reported1.000
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.927
- Cosine Precision@3 on Unknownself-reported0.332
- Cosine Precision@5 on Unknownself-reported0.200
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.927
- Cosine Recall@3 on Unknownself-reported0.995