RALL_RGBCROP_Aug16F-1DO1
This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6522
- Accuracy: 0.8173
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3462
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5263 | 0.0835 | 289 | 0.6351 | 0.6135 |
0.2545 | 1.0835 | 578 | 0.4965 | 0.7812 |
0.1261 | 2.0835 | 867 | 0.5261 | 0.8098 |
0.0753 | 3.0835 | 1156 | 0.6260 | 0.8160 |
0.0246 | 4.0835 | 1445 | 0.7591 | 0.8160 |
0.0587 | 5.0835 | 1734 | 0.8468 | 0.8221 |
0.0351 | 6.0835 | 2023 | 0.8952 | 0.8180 |
0.001 | 7.0835 | 2312 | 1.0094 | 0.8098 |
0.0038 | 8.0835 | 2601 | 1.0583 | 0.8200 |
0.0011 | 9.0835 | 2890 | 1.0632 | 0.8119 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 100
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for TanAlexanderlz/RALL_RGBCROP_Aug16F-1DO1
Base model
MCG-NJU/videomae-base-finetuned-kinetics