RALL_RGBCROP_5e6-poly_test_eval
This model is a fine-tuned version of TanAlexanderlz/RALL_RGBCROP_Aug16F-polynomial on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.5478
- eval_model_preparation_time: 0.0065
- eval_accuracy: 0.8635
- eval_precision: 0.8494
- eval_recall: 0.8835
- eval_f1: 0.8661
- eval_auc_roc: 0.9269
- eval_specificity: 0.8434
- eval_sensitivity: 0.8835
- eval_runtime: 111.893
- eval_samples_per_second: 4.451
- eval_steps_per_second: 0.563
- step: 0
Confusion Matrix: Normal Shoplifting Normal 210 39 Shoplifting 29 220 ***** test metrics ***** eval_accuracy = 0.8635 eval_auc_roc = 0.9269 eval_f1 = 0.8661 eval_loss = 0.5478 eval_model_preparation_time = 0.0065 eval_precision = 0.8494 eval_recall = 0.8835 eval_runtime = 0:01:50.26 eval_samples_per_second = 4.516 eval_sensitivity = 0.8835 eval_specificity = 0.8434 eval_steps_per_second = 0.571
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: polynomial
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4320
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 61
Model tree for TanAlexanderlz/RALL_RGBCROP_5e6-poly_test_eval
Base model
MCG-NJU/videomae-base-finetuned-kinetics