Discussion-Phi-4-multimodal-instruct-audio-dimp-reasoning

This model is a fine-tuned version of microsoft/Phi-4-multimodal-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 16.1311

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
199892.9688 0.1117 10 775.1600
0.3377 0.2235 20 18.9439
18.127 0.3352 30 15.0859
3.0535 0.4469 40 17.2034
0.0927 0.5587 50 17.3699
0.1183 0.6704 60 16.5855
0.0634 0.7821 70 17.7980
0.0472 0.8939 80 17.8210
0.0222 1.0 90 17.0549
0.0432 1.1117 100 19.1342
0.2647 1.2235 110 18.6049
0.0742 1.3352 120 18.7196
0.0208 1.4469 130 16.5360
0.0454 1.5587 140 16.6369
0.0419 1.6704 150 16.4503
0.0328 1.7821 160 16.6961
0.053 1.8939 170 16.4221
0.0173 2.0 180 17.6572
0.0145 2.1117 190 16.6156
0.0126 2.2235 200 18.8278
0.0208 2.3352 210 16.4277
0.0186 2.4469 220 15.9193
0.0108 2.5587 230 18.5243
0.0068 2.6704 240 15.9373
0.0108 2.7821 250 19.0050
0.025 2.8939 260 16.1311

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
21
Safetensors
Model size
5.57B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for TakalaWang/Discussion-Phi-4-multimodal-instruct-audio-dimp-reasoning

Finetuned
(45)
this model