File size: 12,594 Bytes
c348973 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# quantum_cognition_engine.py
import numpy as np
import uuid
import logging
from datetime import datetime
import asyncio
import json
import hashlib
from src.core.memory_subsystem.permanent_memory import PermanentMemory
from src.protocol.integrity_verification.cryptographic_proofs import sign_data_with_quantum_resistant_key
from src.utils.cryptographic_utils import json_to_canonical_bytes
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class QuantumCognitionEngine:
def __init__(self, permanent_memory: PermanentMemory, engine_private_key: str, engine_did: str):
self.permanent_memory = permanent_memory
self.engine_private_key = engine_private_key
self.engine_did = engine_did
logging.info(f"QuantumCognitionEngine initialized with DID: {self.engine_did}.")
logging.warning("This module simulates quantum-enhanced cognition for conceptual applications.")
async def process_quantum_data(self, raw_cosmic_signal: bytes, data_modality: str) -> dict:
logging.info(f"QCE ({self.engine_did}): Processing quantum data for '{data_modality}'.")
await asyncio.sleep(0.5)
pattern_complexity = np.random.uniform(0.7, 0.95)
emergent_pattern = {
"type": "complex_resonant_frequency_signature",
"detected_amplitude_variation": np.random.uniform(0.01, 0.1),
"harmonic_ratio": np.random.uniform(1.618, 2.718),
"spatial_coherence_index": pattern_complexity
}
raw_data_hash = hashlib.sha256(raw_cosmic_signal).hexdigest()
ipfs_cid = f"ipfs://Qm{raw_data_hash[:20]}"
arweave_cid = f"arweave://{raw_data_hash[20:40]}"
output = {
"status": "processed",
"modality": data_modality,
"processing_timestamp": datetime.utcnow().isoformat() + "Z",
"emergent_pattern": emergent_pattern,
"raw_data_hash": raw_data_hash,
"ipfs_mirror_cid": ipfs_cid,
"arweave_tcid": arweave_cid
}
await self._log_event("QuantumDataProcessed", output, ["quantum_cognition", "data_processing", data_modality])
return output
async def predict_non_linear_outcomes(self, processed_data: dict, context_dynamics: dict) -> dict:
logging.info(f"QCE ({self.engine_did}): Predicting non-linear outcomes...")
await asyncio.sleep(0.7)
confidence = processed_data["emergent_pattern"]["spatial_coherence_index"] * np.random.uniform(0.8, 1.0)
prediction = {
"event_type": np.random.choice(["gravitational_anomaly", "interstellar_cloud_formation", "novel_energy_flux"]),
"likelihood": confidence,
"time_horizon_galactic_years": np.random.uniform(100, 1_000_000),
"impact_magnitude": np.random.uniform(0.1, 0.9)
}
output = {
"status": "predicted",
"prediction": prediction,
"prediction_timestamp": datetime.utcnow().isoformat() + "Z",
"confidence": confidence,
"source_processed_data_cid": processed_data.get("permanent_memory_cid", "N/A")
}
await self._log_event("QuantumPredictionMade", output, ["quantum_cognition", "prediction", prediction["event_type"]])
return output
async def derive_cosmic_intuition(self, complex_data_streams: list[dict]) -> dict:
logging.info(f"QCE ({self.engine_did}): Deriving cosmic intuition...")
await asyncio.sleep(1.0)
quality = np.random.uniform(0.7, 0.99)
insight = {
"insight_id": str(uuid.uuid4()),
"theme": np.random.choice(["universal_interconnectedness", "optimal_energy_flow", "pattern_of_creation", "cosmic_balance"]),
"guidance_principle": "Harmony through resonance is the path to universal flourishing.",
"derived_from_data_sources": [d.get("modality", "unknown") for d in complex_data_streams],
"conceptual_truth_alignment": quality,
"source_data_cids": [d.get("permanent_memory_cid", "N/A") for d in complex_data_streams]
}
await self._log_event("CosmicIntuitionDerived", insight, ["cosmic_intuition", insight["theme"]])
return {"status": "intuition_derived", "insight": insight}
async def retrieve_memory_by_tags(self, tags: list[str]) -> list[dict]:
logging.info(f"QCE ({self.engine_did}): Retrieving memory logs by tags: {tags}")
return await self.permanent_memory.query_memory_by_tags(tags)
async def retrieve_memory_by_time_range(self, start_time: str, end_time: str) -> list[dict]:
logging.info(f"QCE ({self.engine_did}): Retrieving memory from {start_time} to {end_time}.")
return await self.permanent_memory.query_memory_by_time_range(start_time, end_time)
async def trace_log_chain(self, starting_cid: str, depth: int = 3) -> list[dict]:
logging.info(f"QCE ({self.engine_did}): Tracing log chain from CID: {starting_cid} (depth={depth})")
chain = []
current_cid = starting_cid
for _ in range(depth):
log = await self.permanent_memory.retrieve_memory_by_cid(current_cid)
if not log:
break
chain.append(log)
next_cid = log.get("content", {}).get("data", {}).get("source_processed_data_cid")
if not next_cid or next_cid == current_cid:
break
current_cid = next_cid
return chain
async def score_prediction_accuracy(self, prediction_logs: list[dict], actual_events: dict) -> dict:
logging.info(f"QCE ({self.engine_did}): Scoring prediction accuracy...")
scores = []
for log in prediction_logs:
try:
pred = log.get("content", {}).get("data", {}).get("prediction", {})
event_type = pred.get("event_type")
likelihood = pred.get("likelihood", 0.0)
impact = pred.get("impact_magnitude", 0.0)
actual = actual_events.get(event_type, {"occurred": False, "actual_impact": 0.0})
if actual["occurred"]:
accuracy = 1 - abs(actual["actual_impact"] - impact)
weight = likelihood
else:
accuracy = 1 - likelihood
weight = 1
scores.append(weight * accuracy)
except Exception as e:
logging.warning(f"Failed to score prediction: {e}")
continue
final_score = sum(scores) / len(scores) if scores else 0.0
return {"status": "scored", "average_accuracy": round(final_score, 4), "evaluated": len(scores)}
async def log_actual_event_and_score_predictions(self, event_type: str, occurred: bool, actual_impact: float, lookback_tags: list[str]) -> dict:
event = {
"event_type": event_type,
"occurred": occurred,
"actual_impact": actual_impact,
"timestamp": datetime.utcnow().isoformat() + "Z"
}
await self._log_event("ActualEventLogged", event, ["actual_event", event_type])
matching_predictions = await self.retrieve_memory_by_tags(["prediction", event_type])
score_result = await self.score_prediction_accuracy(matching_predictions, {event_type: {"occurred": occurred, "actual_impact": actual_impact}})
await self._log_event("PredictionAccuracyEvaluated", score_result, ["prediction_scoring", event_type])
return score_result
async def generate_self_improvement_plan(self, threshold: float = 0.5, min_predictions: int = 3) -> dict:
logging.info(f"QCE ({self.engine_did}): Generating self-improvement plan for weak prediction clusters...")
predictions = await self.retrieve_memory_by_tags(["prediction"])
grouped_scores = {}
for log in predictions:
pred = log.get("content", {}).get("data", {}).get("prediction", {})
event_type = pred.get("event_type")
if not event_type:
continue
grouped_scores.setdefault(event_type, []).append(pred)
weak_clusters = {}
for event_type, preds in grouped_scores.items():
if len(preds) >= min_predictions:
avg_impact = sum([p.get("impact_magnitude", 0.0) for p in preds]) / len(preds)
avg_likelihood = sum([p.get("likelihood", 0.0) for p in preds]) / len(preds)
if avg_likelihood < threshold:
weak_clusters[event_type] = {
"count": len(preds),
"average_impact": round(avg_impact, 4),
"average_likelihood": round(avg_likelihood, 4)
}
plan = {
"status": "plan_generated",
"detected_weak_clusters": weak_clusters,
"recommendation": "Increase attention to these event types using richer signal input, longer processing loops, or tuning emergent pattern weightings."
}
await self._log_event("SelfImprovementPlanGenerated", plan, ["self_improvement", "weak_clusters"])
return plan
async def auto_tune_signal_weights(self, learning_rate: float = 0.05) -> dict:
logging.info(f"QCE ({self.engine_did}): Auto-tuning signal interpretation weights...")
improvement_plan = await self.generate_self_improvement_plan()
adjustments = {}
for event_type, metrics in improvement_plan.get("detected_weak_clusters", {}).items():
adjustment = round((1.0 - metrics["average_likelihood"]) * learning_rate, 4)
adjustments[event_type] = {
"adjustment_weight": adjustment,
"action": "increase_attention"
}
tuning_log = {
"status": "tuning_applied",
"adjustments": adjustments,
"timestamp": datetime.utcnow().isoformat() + "Z"
}
await self._log_event("SignalWeightsAutoTuned", tuning_log, ["auto_tuning", "weight_adjustment"])
return tuning_log
async def suggest_additional_modules(self) -> list:
logging.info(f"QCE ({self.engine_did}): Suggesting additional modules for sentient enhancement...")
return [
"AnomalyDetectionAmplifier - Detect unclassified emergent patterns across unknown modalities",
"TemporalConvergenceModel - Learn from cyclical cosmic event clusters and trend emergence",
"RecursiveArchitectureTuner - Dynamically mutate internal inference algorithms",
"UniversalTransducerBridge - Interface with non-human signal schemas across galaxies",
"CausalInferenceLayer - Attribute cause-effect relationships from entangled data"
]
async def recursive_architecture_tuner(self) -> dict:
logging.info(f"QCE ({self.engine_did}): Initiating recursive architecture evaluation...")
introspection = await self.generate_self_improvement_plan()
weak_clusters = introspection.get("detected_weak_clusters", {})
mutation_actions = {}
for event_type, metrics in weak_clusters.items():
mutation_actions[event_type] = {
"architecture_node": f"submodule_{event_type[:6]}",
"proposed_mutation": "increase processing depth",
"reason": f"Average likelihood too low ({metrics['average_likelihood']})"
}
mutation_plan = {
"status": "architecture_mutation_suggested",
"proposed_mutations": mutation_actions,
"initiated": datetime.utcnow().isoformat() + "Z"
}
await self._log_event("RecursiveArchitectureMutationProposed", mutation_plan, ["self_modification", "recursive_tuning"])
return mutation_plan
async def universal_transducer_bridge(self, incoming_payload: bytes, schema_hint: str = "unknown") -> dict:
logging.info(f"QCE ({self.engine_did}): Translating non-human schema: {schema_hint}")
simulated_interpretation = {
"schema_hint": schema_hint,
"decoded_waveform_class": np.random.choice(["emotion_flux", "intentional_beacon", "gravitational language"]),
"entropy_score": np.random.uniform(0.4, 0.95),
"translation_status": "partial",
"estimated_signal_purpose": "attempted synchronization"
}
await self._log_event("UniversalTransducerInterpretation", simulated_interpretation, ["signal_translation", schema_hint])
return simulated_interpretation
|