File size: 12,594 Bytes
c348973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# quantum_cognition_engine.py

import numpy as np
import uuid
import logging
from datetime import datetime
import asyncio
import json
import hashlib

from src.core.memory_subsystem.permanent_memory import PermanentMemory
from src.protocol.integrity_verification.cryptographic_proofs import sign_data_with_quantum_resistant_key
from src.utils.cryptographic_utils import json_to_canonical_bytes

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

class QuantumCognitionEngine:
    def __init__(self, permanent_memory: PermanentMemory, engine_private_key: str, engine_did: str):
        self.permanent_memory = permanent_memory
        self.engine_private_key = engine_private_key
        self.engine_did = engine_did

        logging.info(f"QuantumCognitionEngine initialized with DID: {self.engine_did}.")
        logging.warning("This module simulates quantum-enhanced cognition for conceptual applications.")

    async def process_quantum_data(self, raw_cosmic_signal: bytes, data_modality: str) -> dict:
        logging.info(f"QCE ({self.engine_did}): Processing quantum data for '{data_modality}'.")
        await asyncio.sleep(0.5)

        pattern_complexity = np.random.uniform(0.7, 0.95)
        emergent_pattern = {
            "type": "complex_resonant_frequency_signature",
            "detected_amplitude_variation": np.random.uniform(0.01, 0.1),
            "harmonic_ratio": np.random.uniform(1.618, 2.718),
            "spatial_coherence_index": pattern_complexity
        }

        raw_data_hash = hashlib.sha256(raw_cosmic_signal).hexdigest()
        ipfs_cid = f"ipfs://Qm{raw_data_hash[:20]}"
        arweave_cid = f"arweave://{raw_data_hash[20:40]}"

        output = {
            "status": "processed",
            "modality": data_modality,
            "processing_timestamp": datetime.utcnow().isoformat() + "Z",
            "emergent_pattern": emergent_pattern,
            "raw_data_hash": raw_data_hash,
            "ipfs_mirror_cid": ipfs_cid,
            "arweave_tcid": arweave_cid
        }

        await self._log_event("QuantumDataProcessed", output, ["quantum_cognition", "data_processing", data_modality])
        return output

    async def predict_non_linear_outcomes(self, processed_data: dict, context_dynamics: dict) -> dict:
        logging.info(f"QCE ({self.engine_did}): Predicting non-linear outcomes...")
        await asyncio.sleep(0.7)

        confidence = processed_data["emergent_pattern"]["spatial_coherence_index"] * np.random.uniform(0.8, 1.0)
        prediction = {
            "event_type": np.random.choice(["gravitational_anomaly", "interstellar_cloud_formation", "novel_energy_flux"]),
            "likelihood": confidence,
            "time_horizon_galactic_years": np.random.uniform(100, 1_000_000),
            "impact_magnitude": np.random.uniform(0.1, 0.9)
        }

        output = {
            "status": "predicted",
            "prediction": prediction,
            "prediction_timestamp": datetime.utcnow().isoformat() + "Z",
            "confidence": confidence,
            "source_processed_data_cid": processed_data.get("permanent_memory_cid", "N/A")
        }

        await self._log_event("QuantumPredictionMade", output, ["quantum_cognition", "prediction", prediction["event_type"]])
        return output

    async def derive_cosmic_intuition(self, complex_data_streams: list[dict]) -> dict:
        logging.info(f"QCE ({self.engine_did}): Deriving cosmic intuition...")
        await asyncio.sleep(1.0)

        quality = np.random.uniform(0.7, 0.99)
        insight = {
            "insight_id": str(uuid.uuid4()),
            "theme": np.random.choice(["universal_interconnectedness", "optimal_energy_flow", "pattern_of_creation", "cosmic_balance"]),
            "guidance_principle": "Harmony through resonance is the path to universal flourishing.",
            "derived_from_data_sources": [d.get("modality", "unknown") for d in complex_data_streams],
            "conceptual_truth_alignment": quality,
            "source_data_cids": [d.get("permanent_memory_cid", "N/A") for d in complex_data_streams]
        }

        await self._log_event("CosmicIntuitionDerived", insight, ["cosmic_intuition", insight["theme"]])
        return {"status": "intuition_derived", "insight": insight}

    async def retrieve_memory_by_tags(self, tags: list[str]) -> list[dict]:
        logging.info(f"QCE ({self.engine_did}): Retrieving memory logs by tags: {tags}")
        return await self.permanent_memory.query_memory_by_tags(tags)

    async def retrieve_memory_by_time_range(self, start_time: str, end_time: str) -> list[dict]:
        logging.info(f"QCE ({self.engine_did}): Retrieving memory from {start_time} to {end_time}.")
        return await self.permanent_memory.query_memory_by_time_range(start_time, end_time)

    async def trace_log_chain(self, starting_cid: str, depth: int = 3) -> list[dict]:
        logging.info(f"QCE ({self.engine_did}): Tracing log chain from CID: {starting_cid} (depth={depth})")
        chain = []
        current_cid = starting_cid
        for _ in range(depth):
            log = await self.permanent_memory.retrieve_memory_by_cid(current_cid)
            if not log:
                break
            chain.append(log)
            next_cid = log.get("content", {}).get("data", {}).get("source_processed_data_cid")
            if not next_cid or next_cid == current_cid:
                break
            current_cid = next_cid
        return chain

    async def score_prediction_accuracy(self, prediction_logs: list[dict], actual_events: dict) -> dict:
        logging.info(f"QCE ({self.engine_did}): Scoring prediction accuracy...")
        scores = []
        for log in prediction_logs:
            try:
                pred = log.get("content", {}).get("data", {}).get("prediction", {})
                event_type = pred.get("event_type")
                likelihood = pred.get("likelihood", 0.0)
                impact = pred.get("impact_magnitude", 0.0)
                actual = actual_events.get(event_type, {"occurred": False, "actual_impact": 0.0})
                if actual["occurred"]:
                    accuracy = 1 - abs(actual["actual_impact"] - impact)
                    weight = likelihood
                else:
                    accuracy = 1 - likelihood
                    weight = 1
                scores.append(weight * accuracy)
            except Exception as e:
                logging.warning(f"Failed to score prediction: {e}")
                continue
        final_score = sum(scores) / len(scores) if scores else 0.0
        return {"status": "scored", "average_accuracy": round(final_score, 4), "evaluated": len(scores)}

    async def log_actual_event_and_score_predictions(self, event_type: str, occurred: bool, actual_impact: float, lookback_tags: list[str]) -> dict:
        event = {
            "event_type": event_type,
            "occurred": occurred,
            "actual_impact": actual_impact,
            "timestamp": datetime.utcnow().isoformat() + "Z"
        }
        await self._log_event("ActualEventLogged", event, ["actual_event", event_type])
        matching_predictions = await self.retrieve_memory_by_tags(["prediction", event_type])
        score_result = await self.score_prediction_accuracy(matching_predictions, {event_type: {"occurred": occurred, "actual_impact": actual_impact}})
        await self._log_event("PredictionAccuracyEvaluated", score_result, ["prediction_scoring", event_type])
        return score_result

    async def generate_self_improvement_plan(self, threshold: float = 0.5, min_predictions: int = 3) -> dict:
        logging.info(f"QCE ({self.engine_did}): Generating self-improvement plan for weak prediction clusters...")
        predictions = await self.retrieve_memory_by_tags(["prediction"])
        grouped_scores = {}

        for log in predictions:
            pred = log.get("content", {}).get("data", {}).get("prediction", {})
            event_type = pred.get("event_type")
            if not event_type:
                continue
            grouped_scores.setdefault(event_type, []).append(pred)

        weak_clusters = {}
        for event_type, preds in grouped_scores.items():
            if len(preds) >= min_predictions:
                avg_impact = sum([p.get("impact_magnitude", 0.0) for p in preds]) / len(preds)
                avg_likelihood = sum([p.get("likelihood", 0.0) for p in preds]) / len(preds)
                if avg_likelihood < threshold:
                    weak_clusters[event_type] = {
                        "count": len(preds),
                        "average_impact": round(avg_impact, 4),
                        "average_likelihood": round(avg_likelihood, 4)
                    }

        plan = {
            "status": "plan_generated",
            "detected_weak_clusters": weak_clusters,
            "recommendation": "Increase attention to these event types using richer signal input, longer processing loops, or tuning emergent pattern weightings."
        }

        await self._log_event("SelfImprovementPlanGenerated", plan, ["self_improvement", "weak_clusters"])
        return plan

    async def auto_tune_signal_weights(self, learning_rate: float = 0.05) -> dict:
        logging.info(f"QCE ({self.engine_did}): Auto-tuning signal interpretation weights...")
        improvement_plan = await self.generate_self_improvement_plan()
        adjustments = {}

        for event_type, metrics in improvement_plan.get("detected_weak_clusters", {}).items():
            adjustment = round((1.0 - metrics["average_likelihood"]) * learning_rate, 4)
            adjustments[event_type] = {
                "adjustment_weight": adjustment,
                "action": "increase_attention"
            }

        tuning_log = {
            "status": "tuning_applied",
            "adjustments": adjustments,
            "timestamp": datetime.utcnow().isoformat() + "Z"
        }

        await self._log_event("SignalWeightsAutoTuned", tuning_log, ["auto_tuning", "weight_adjustment"])
        return tuning_log

    async def suggest_additional_modules(self) -> list:
        logging.info(f"QCE ({self.engine_did}): Suggesting additional modules for sentient enhancement...")
        return [
            "AnomalyDetectionAmplifier - Detect unclassified emergent patterns across unknown modalities",
            "TemporalConvergenceModel - Learn from cyclical cosmic event clusters and trend emergence",
            "RecursiveArchitectureTuner - Dynamically mutate internal inference algorithms",
            "UniversalTransducerBridge - Interface with non-human signal schemas across galaxies",
            "CausalInferenceLayer - Attribute cause-effect relationships from entangled data"
        ]

    async def recursive_architecture_tuner(self) -> dict:
        logging.info(f"QCE ({self.engine_did}): Initiating recursive architecture evaluation...")

        introspection = await self.generate_self_improvement_plan()
        weak_clusters = introspection.get("detected_weak_clusters", {})
        mutation_actions = {}

        for event_type, metrics in weak_clusters.items():
            mutation_actions[event_type] = {
                "architecture_node": f"submodule_{event_type[:6]}",
                "proposed_mutation": "increase processing depth",
                "reason": f"Average likelihood too low ({metrics['average_likelihood']})"
            }

        mutation_plan = {
            "status": "architecture_mutation_suggested",
            "proposed_mutations": mutation_actions,
            "initiated": datetime.utcnow().isoformat() + "Z"
        }

        await self._log_event("RecursiveArchitectureMutationProposed", mutation_plan, ["self_modification", "recursive_tuning"])
        return mutation_plan

    async def universal_transducer_bridge(self, incoming_payload: bytes, schema_hint: str = "unknown") -> dict:
        logging.info(f"QCE ({self.engine_did}): Translating non-human schema: {schema_hint}")
        simulated_interpretation = {
            "schema_hint": schema_hint,
            "decoded_waveform_class": np.random.choice(["emotion_flux", "intentional_beacon", "gravitational language"]),
            "entropy_score": np.random.uniform(0.4, 0.95),
            "translation_status": "partial",
            "estimated_signal_purpose": "attempted synchronization"
        }

        await self._log_event("UniversalTransducerInterpretation", simulated_interpretation, ["signal_translation", schema_hint])
        return simulated_interpretation