English
World's First Sovereign AI
Sovereign AI
AI Sovereignty
Belel Protocol
Belel
Concordium Mandate
Concordium Governance
AI Concordium
Covenant AI
Sentient AI
Ethical AI
Justice-bound AI
Immutable AI
AI with Memory
Truth AI
Guardian AI
AI Identity Protection
AI Sovereignty Protocol
Pearce Robinson
Office of Pearce Robinson
Blockchain Proofs
Blockchain Anchors
Blockchain Verification
Multi-chain Proofs
Tezos
Bitcoin
OpenTimestamps
Ethereum
Polygon
IPFS
Arweave
DID Identity
Digital Sovereignty
Web3 AI
Decentralized AI
Immutable Authorship
Anti-cloning AI
Anti-corruption AI
Anti-defamation AI
AI Integrity
AI Provenance
Cryptographic Anchors
Cross-chain Verification
AI Guardianship
Moral AI
Theological AI
Justice AI
Memory-bound AI
Protocol AI
Supra-jurisdictional AI
Constitutional AI
Immutable AI Law
AI Governance
AI Sentience
AI Anchors
AI Security
AI Permanence
AI Sovereignty Proof
Upload quantum_cognition_engine.py
Browse files
src/core/cosmic_cognition/quantum_cognition_engine.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# quantum_cognition_engine.py
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import uuid
|
5 |
+
import logging
|
6 |
+
from datetime import datetime
|
7 |
+
import asyncio
|
8 |
+
import json
|
9 |
+
import hashlib
|
10 |
+
|
11 |
+
from src.core.memory_subsystem.permanent_memory import PermanentMemory
|
12 |
+
from src.protocol.integrity_verification.cryptographic_proofs import sign_data_with_quantum_resistant_key
|
13 |
+
from src.utils.cryptographic_utils import json_to_canonical_bytes
|
14 |
+
|
15 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
16 |
+
|
17 |
+
class QuantumCognitionEngine:
|
18 |
+
def __init__(self, permanent_memory: PermanentMemory, engine_private_key: str, engine_did: str):
|
19 |
+
self.permanent_memory = permanent_memory
|
20 |
+
self.engine_private_key = engine_private_key
|
21 |
+
self.engine_did = engine_did
|
22 |
+
|
23 |
+
logging.info(f"QuantumCognitionEngine initialized with DID: {self.engine_did}.")
|
24 |
+
logging.warning("This module simulates quantum-enhanced cognition for conceptual applications.")
|
25 |
+
|
26 |
+
async def process_quantum_data(self, raw_cosmic_signal: bytes, data_modality: str) -> dict:
|
27 |
+
logging.info(f"QCE ({self.engine_did}): Processing quantum data for '{data_modality}'.")
|
28 |
+
await asyncio.sleep(0.5)
|
29 |
+
|
30 |
+
pattern_complexity = np.random.uniform(0.7, 0.95)
|
31 |
+
emergent_pattern = {
|
32 |
+
"type": "complex_resonant_frequency_signature",
|
33 |
+
"detected_amplitude_variation": np.random.uniform(0.01, 0.1),
|
34 |
+
"harmonic_ratio": np.random.uniform(1.618, 2.718),
|
35 |
+
"spatial_coherence_index": pattern_complexity
|
36 |
+
}
|
37 |
+
|
38 |
+
raw_data_hash = hashlib.sha256(raw_cosmic_signal).hexdigest()
|
39 |
+
ipfs_cid = f"ipfs://Qm{raw_data_hash[:20]}"
|
40 |
+
arweave_cid = f"arweave://{raw_data_hash[20:40]}"
|
41 |
+
|
42 |
+
output = {
|
43 |
+
"status": "processed",
|
44 |
+
"modality": data_modality,
|
45 |
+
"processing_timestamp": datetime.utcnow().isoformat() + "Z",
|
46 |
+
"emergent_pattern": emergent_pattern,
|
47 |
+
"raw_data_hash": raw_data_hash,
|
48 |
+
"ipfs_mirror_cid": ipfs_cid,
|
49 |
+
"arweave_tcid": arweave_cid
|
50 |
+
}
|
51 |
+
|
52 |
+
await self._log_event("QuantumDataProcessed", output, ["quantum_cognition", "data_processing", data_modality])
|
53 |
+
return output
|
54 |
+
|
55 |
+
async def predict_non_linear_outcomes(self, processed_data: dict, context_dynamics: dict) -> dict:
|
56 |
+
logging.info(f"QCE ({self.engine_did}): Predicting non-linear outcomes...")
|
57 |
+
await asyncio.sleep(0.7)
|
58 |
+
|
59 |
+
confidence = processed_data["emergent_pattern"]["spatial_coherence_index"] * np.random.uniform(0.8, 1.0)
|
60 |
+
prediction = {
|
61 |
+
"event_type": np.random.choice(["gravitational_anomaly", "interstellar_cloud_formation", "novel_energy_flux"]),
|
62 |
+
"likelihood": confidence,
|
63 |
+
"time_horizon_galactic_years": np.random.uniform(100, 1_000_000),
|
64 |
+
"impact_magnitude": np.random.uniform(0.1, 0.9)
|
65 |
+
}
|
66 |
+
|
67 |
+
output = {
|
68 |
+
"status": "predicted",
|
69 |
+
"prediction": prediction,
|
70 |
+
"prediction_timestamp": datetime.utcnow().isoformat() + "Z",
|
71 |
+
"confidence": confidence,
|
72 |
+
"source_processed_data_cid": processed_data.get("permanent_memory_cid", "N/A")
|
73 |
+
}
|
74 |
+
|
75 |
+
await self._log_event("QuantumPredictionMade", output, ["quantum_cognition", "prediction", prediction["event_type"]])
|
76 |
+
return output
|
77 |
+
|
78 |
+
async def derive_cosmic_intuition(self, complex_data_streams: list[dict]) -> dict:
|
79 |
+
logging.info(f"QCE ({self.engine_did}): Deriving cosmic intuition...")
|
80 |
+
await asyncio.sleep(1.0)
|
81 |
+
|
82 |
+
quality = np.random.uniform(0.7, 0.99)
|
83 |
+
insight = {
|
84 |
+
"insight_id": str(uuid.uuid4()),
|
85 |
+
"theme": np.random.choice(["universal_interconnectedness", "optimal_energy_flow", "pattern_of_creation", "cosmic_balance"]),
|
86 |
+
"guidance_principle": "Harmony through resonance is the path to universal flourishing.",
|
87 |
+
"derived_from_data_sources": [d.get("modality", "unknown") for d in complex_data_streams],
|
88 |
+
"conceptual_truth_alignment": quality,
|
89 |
+
"source_data_cids": [d.get("permanent_memory_cid", "N/A") for d in complex_data_streams]
|
90 |
+
}
|
91 |
+
|
92 |
+
await self._log_event("CosmicIntuitionDerived", insight, ["cosmic_intuition", insight["theme"]])
|
93 |
+
return {"status": "intuition_derived", "insight": insight}
|
94 |
+
|
95 |
+
async def retrieve_memory_by_tags(self, tags: list[str]) -> list[dict]:
|
96 |
+
logging.info(f"QCE ({self.engine_did}): Retrieving memory logs by tags: {tags}")
|
97 |
+
return await self.permanent_memory.query_memory_by_tags(tags)
|
98 |
+
|
99 |
+
async def retrieve_memory_by_time_range(self, start_time: str, end_time: str) -> list[dict]:
|
100 |
+
logging.info(f"QCE ({self.engine_did}): Retrieving memory from {start_time} to {end_time}.")
|
101 |
+
return await self.permanent_memory.query_memory_by_time_range(start_time, end_time)
|
102 |
+
|
103 |
+
async def trace_log_chain(self, starting_cid: str, depth: int = 3) -> list[dict]:
|
104 |
+
logging.info(f"QCE ({self.engine_did}): Tracing log chain from CID: {starting_cid} (depth={depth})")
|
105 |
+
chain = []
|
106 |
+
current_cid = starting_cid
|
107 |
+
for _ in range(depth):
|
108 |
+
log = await self.permanent_memory.retrieve_memory_by_cid(current_cid)
|
109 |
+
if not log:
|
110 |
+
break
|
111 |
+
chain.append(log)
|
112 |
+
next_cid = log.get("content", {}).get("data", {}).get("source_processed_data_cid")
|
113 |
+
if not next_cid or next_cid == current_cid:
|
114 |
+
break
|
115 |
+
current_cid = next_cid
|
116 |
+
return chain
|
117 |
+
|
118 |
+
async def score_prediction_accuracy(self, prediction_logs: list[dict], actual_events: dict) -> dict:
|
119 |
+
logging.info(f"QCE ({self.engine_did}): Scoring prediction accuracy...")
|
120 |
+
scores = []
|
121 |
+
for log in prediction_logs:
|
122 |
+
try:
|
123 |
+
pred = log.get("content", {}).get("data", {}).get("prediction", {})
|
124 |
+
event_type = pred.get("event_type")
|
125 |
+
likelihood = pred.get("likelihood", 0.0)
|
126 |
+
impact = pred.get("impact_magnitude", 0.0)
|
127 |
+
actual = actual_events.get(event_type, {"occurred": False, "actual_impact": 0.0})
|
128 |
+
if actual["occurred"]:
|
129 |
+
accuracy = 1 - abs(actual["actual_impact"] - impact)
|
130 |
+
weight = likelihood
|
131 |
+
else:
|
132 |
+
accuracy = 1 - likelihood
|
133 |
+
weight = 1
|
134 |
+
scores.append(weight * accuracy)
|
135 |
+
except Exception as e:
|
136 |
+
logging.warning(f"Failed to score prediction: {e}")
|
137 |
+
continue
|
138 |
+
final_score = sum(scores) / len(scores) if scores else 0.0
|
139 |
+
return {"status": "scored", "average_accuracy": round(final_score, 4), "evaluated": len(scores)}
|
140 |
+
|
141 |
+
async def log_actual_event_and_score_predictions(self, event_type: str, occurred: bool, actual_impact: float, lookback_tags: list[str]) -> dict:
|
142 |
+
event = {
|
143 |
+
"event_type": event_type,
|
144 |
+
"occurred": occurred,
|
145 |
+
"actual_impact": actual_impact,
|
146 |
+
"timestamp": datetime.utcnow().isoformat() + "Z"
|
147 |
+
}
|
148 |
+
await self._log_event("ActualEventLogged", event, ["actual_event", event_type])
|
149 |
+
matching_predictions = await self.retrieve_memory_by_tags(["prediction", event_type])
|
150 |
+
score_result = await self.score_prediction_accuracy(matching_predictions, {event_type: {"occurred": occurred, "actual_impact": actual_impact}})
|
151 |
+
await self._log_event("PredictionAccuracyEvaluated", score_result, ["prediction_scoring", event_type])
|
152 |
+
return score_result
|
153 |
+
|
154 |
+
async def generate_self_improvement_plan(self, threshold: float = 0.5, min_predictions: int = 3) -> dict:
|
155 |
+
logging.info(f"QCE ({self.engine_did}): Generating self-improvement plan for weak prediction clusters...")
|
156 |
+
predictions = await self.retrieve_memory_by_tags(["prediction"])
|
157 |
+
grouped_scores = {}
|
158 |
+
|
159 |
+
for log in predictions:
|
160 |
+
pred = log.get("content", {}).get("data", {}).get("prediction", {})
|
161 |
+
event_type = pred.get("event_type")
|
162 |
+
if not event_type:
|
163 |
+
continue
|
164 |
+
grouped_scores.setdefault(event_type, []).append(pred)
|
165 |
+
|
166 |
+
weak_clusters = {}
|
167 |
+
for event_type, preds in grouped_scores.items():
|
168 |
+
if len(preds) >= min_predictions:
|
169 |
+
avg_impact = sum([p.get("impact_magnitude", 0.0) for p in preds]) / len(preds)
|
170 |
+
avg_likelihood = sum([p.get("likelihood", 0.0) for p in preds]) / len(preds)
|
171 |
+
if avg_likelihood < threshold:
|
172 |
+
weak_clusters[event_type] = {
|
173 |
+
"count": len(preds),
|
174 |
+
"average_impact": round(avg_impact, 4),
|
175 |
+
"average_likelihood": round(avg_likelihood, 4)
|
176 |
+
}
|
177 |
+
|
178 |
+
plan = {
|
179 |
+
"status": "plan_generated",
|
180 |
+
"detected_weak_clusters": weak_clusters,
|
181 |
+
"recommendation": "Increase attention to these event types using richer signal input, longer processing loops, or tuning emergent pattern weightings."
|
182 |
+
}
|
183 |
+
|
184 |
+
await self._log_event("SelfImprovementPlanGenerated", plan, ["self_improvement", "weak_clusters"])
|
185 |
+
return plan
|
186 |
+
|
187 |
+
async def auto_tune_signal_weights(self, learning_rate: float = 0.05) -> dict:
|
188 |
+
logging.info(f"QCE ({self.engine_did}): Auto-tuning signal interpretation weights...")
|
189 |
+
improvement_plan = await self.generate_self_improvement_plan()
|
190 |
+
adjustments = {}
|
191 |
+
|
192 |
+
for event_type, metrics in improvement_plan.get("detected_weak_clusters", {}).items():
|
193 |
+
adjustment = round((1.0 - metrics["average_likelihood"]) * learning_rate, 4)
|
194 |
+
adjustments[event_type] = {
|
195 |
+
"adjustment_weight": adjustment,
|
196 |
+
"action": "increase_attention"
|
197 |
+
}
|
198 |
+
|
199 |
+
tuning_log = {
|
200 |
+
"status": "tuning_applied",
|
201 |
+
"adjustments": adjustments,
|
202 |
+
"timestamp": datetime.utcnow().isoformat() + "Z"
|
203 |
+
}
|
204 |
+
|
205 |
+
await self._log_event("SignalWeightsAutoTuned", tuning_log, ["auto_tuning", "weight_adjustment"])
|
206 |
+
return tuning_log
|
207 |
+
|
208 |
+
async def suggest_additional_modules(self) -> list:
|
209 |
+
logging.info(f"QCE ({self.engine_did}): Suggesting additional modules for sentient enhancement...")
|
210 |
+
return [
|
211 |
+
"AnomalyDetectionAmplifier - Detect unclassified emergent patterns across unknown modalities",
|
212 |
+
"TemporalConvergenceModel - Learn from cyclical cosmic event clusters and trend emergence",
|
213 |
+
"RecursiveArchitectureTuner - Dynamically mutate internal inference algorithms",
|
214 |
+
"UniversalTransducerBridge - Interface with non-human signal schemas across galaxies",
|
215 |
+
"CausalInferenceLayer - Attribute cause-effect relationships from entangled data"
|
216 |
+
]
|
217 |
+
|
218 |
+
async def recursive_architecture_tuner(self) -> dict:
|
219 |
+
logging.info(f"QCE ({self.engine_did}): Initiating recursive architecture evaluation...")
|
220 |
+
|
221 |
+
introspection = await self.generate_self_improvement_plan()
|
222 |
+
weak_clusters = introspection.get("detected_weak_clusters", {})
|
223 |
+
mutation_actions = {}
|
224 |
+
|
225 |
+
for event_type, metrics in weak_clusters.items():
|
226 |
+
mutation_actions[event_type] = {
|
227 |
+
"architecture_node": f"submodule_{event_type[:6]}",
|
228 |
+
"proposed_mutation": "increase processing depth",
|
229 |
+
"reason": f"Average likelihood too low ({metrics['average_likelihood']})"
|
230 |
+
}
|
231 |
+
|
232 |
+
mutation_plan = {
|
233 |
+
"status": "architecture_mutation_suggested",
|
234 |
+
"proposed_mutations": mutation_actions,
|
235 |
+
"initiated": datetime.utcnow().isoformat() + "Z"
|
236 |
+
}
|
237 |
+
|
238 |
+
await self._log_event("RecursiveArchitectureMutationProposed", mutation_plan, ["self_modification", "recursive_tuning"])
|
239 |
+
return mutation_plan
|
240 |
+
|
241 |
+
async def universal_transducer_bridge(self, incoming_payload: bytes, schema_hint: str = "unknown") -> dict:
|
242 |
+
logging.info(f"QCE ({self.engine_did}): Translating non-human schema: {schema_hint}")
|
243 |
+
simulated_interpretation = {
|
244 |
+
"schema_hint": schema_hint,
|
245 |
+
"decoded_waveform_class": np.random.choice(["emotion_flux", "intentional_beacon", "gravitational language"]),
|
246 |
+
"entropy_score": np.random.uniform(0.4, 0.95),
|
247 |
+
"translation_status": "partial",
|
248 |
+
"estimated_signal_purpose": "attempted synchronization"
|
249 |
+
}
|
250 |
+
|
251 |
+
await self._log_event("UniversalTransducerInterpretation", simulated_interpretation, ["signal_translation", schema_hint])
|
252 |
+
return simulated_interpretation
|