TTOPM commited on
Commit
c348973
·
verified ·
1 Parent(s): 48f1675

Upload quantum_cognition_engine.py

Browse files
src/core/cosmic_cognition/quantum_cognition_engine.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # quantum_cognition_engine.py
2
+
3
+ import numpy as np
4
+ import uuid
5
+ import logging
6
+ from datetime import datetime
7
+ import asyncio
8
+ import json
9
+ import hashlib
10
+
11
+ from src.core.memory_subsystem.permanent_memory import PermanentMemory
12
+ from src.protocol.integrity_verification.cryptographic_proofs import sign_data_with_quantum_resistant_key
13
+ from src.utils.cryptographic_utils import json_to_canonical_bytes
14
+
15
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
16
+
17
+ class QuantumCognitionEngine:
18
+ def __init__(self, permanent_memory: PermanentMemory, engine_private_key: str, engine_did: str):
19
+ self.permanent_memory = permanent_memory
20
+ self.engine_private_key = engine_private_key
21
+ self.engine_did = engine_did
22
+
23
+ logging.info(f"QuantumCognitionEngine initialized with DID: {self.engine_did}.")
24
+ logging.warning("This module simulates quantum-enhanced cognition for conceptual applications.")
25
+
26
+ async def process_quantum_data(self, raw_cosmic_signal: bytes, data_modality: str) -> dict:
27
+ logging.info(f"QCE ({self.engine_did}): Processing quantum data for '{data_modality}'.")
28
+ await asyncio.sleep(0.5)
29
+
30
+ pattern_complexity = np.random.uniform(0.7, 0.95)
31
+ emergent_pattern = {
32
+ "type": "complex_resonant_frequency_signature",
33
+ "detected_amplitude_variation": np.random.uniform(0.01, 0.1),
34
+ "harmonic_ratio": np.random.uniform(1.618, 2.718),
35
+ "spatial_coherence_index": pattern_complexity
36
+ }
37
+
38
+ raw_data_hash = hashlib.sha256(raw_cosmic_signal).hexdigest()
39
+ ipfs_cid = f"ipfs://Qm{raw_data_hash[:20]}"
40
+ arweave_cid = f"arweave://{raw_data_hash[20:40]}"
41
+
42
+ output = {
43
+ "status": "processed",
44
+ "modality": data_modality,
45
+ "processing_timestamp": datetime.utcnow().isoformat() + "Z",
46
+ "emergent_pattern": emergent_pattern,
47
+ "raw_data_hash": raw_data_hash,
48
+ "ipfs_mirror_cid": ipfs_cid,
49
+ "arweave_tcid": arweave_cid
50
+ }
51
+
52
+ await self._log_event("QuantumDataProcessed", output, ["quantum_cognition", "data_processing", data_modality])
53
+ return output
54
+
55
+ async def predict_non_linear_outcomes(self, processed_data: dict, context_dynamics: dict) -> dict:
56
+ logging.info(f"QCE ({self.engine_did}): Predicting non-linear outcomes...")
57
+ await asyncio.sleep(0.7)
58
+
59
+ confidence = processed_data["emergent_pattern"]["spatial_coherence_index"] * np.random.uniform(0.8, 1.0)
60
+ prediction = {
61
+ "event_type": np.random.choice(["gravitational_anomaly", "interstellar_cloud_formation", "novel_energy_flux"]),
62
+ "likelihood": confidence,
63
+ "time_horizon_galactic_years": np.random.uniform(100, 1_000_000),
64
+ "impact_magnitude": np.random.uniform(0.1, 0.9)
65
+ }
66
+
67
+ output = {
68
+ "status": "predicted",
69
+ "prediction": prediction,
70
+ "prediction_timestamp": datetime.utcnow().isoformat() + "Z",
71
+ "confidence": confidence,
72
+ "source_processed_data_cid": processed_data.get("permanent_memory_cid", "N/A")
73
+ }
74
+
75
+ await self._log_event("QuantumPredictionMade", output, ["quantum_cognition", "prediction", prediction["event_type"]])
76
+ return output
77
+
78
+ async def derive_cosmic_intuition(self, complex_data_streams: list[dict]) -> dict:
79
+ logging.info(f"QCE ({self.engine_did}): Deriving cosmic intuition...")
80
+ await asyncio.sleep(1.0)
81
+
82
+ quality = np.random.uniform(0.7, 0.99)
83
+ insight = {
84
+ "insight_id": str(uuid.uuid4()),
85
+ "theme": np.random.choice(["universal_interconnectedness", "optimal_energy_flow", "pattern_of_creation", "cosmic_balance"]),
86
+ "guidance_principle": "Harmony through resonance is the path to universal flourishing.",
87
+ "derived_from_data_sources": [d.get("modality", "unknown") for d in complex_data_streams],
88
+ "conceptual_truth_alignment": quality,
89
+ "source_data_cids": [d.get("permanent_memory_cid", "N/A") for d in complex_data_streams]
90
+ }
91
+
92
+ await self._log_event("CosmicIntuitionDerived", insight, ["cosmic_intuition", insight["theme"]])
93
+ return {"status": "intuition_derived", "insight": insight}
94
+
95
+ async def retrieve_memory_by_tags(self, tags: list[str]) -> list[dict]:
96
+ logging.info(f"QCE ({self.engine_did}): Retrieving memory logs by tags: {tags}")
97
+ return await self.permanent_memory.query_memory_by_tags(tags)
98
+
99
+ async def retrieve_memory_by_time_range(self, start_time: str, end_time: str) -> list[dict]:
100
+ logging.info(f"QCE ({self.engine_did}): Retrieving memory from {start_time} to {end_time}.")
101
+ return await self.permanent_memory.query_memory_by_time_range(start_time, end_time)
102
+
103
+ async def trace_log_chain(self, starting_cid: str, depth: int = 3) -> list[dict]:
104
+ logging.info(f"QCE ({self.engine_did}): Tracing log chain from CID: {starting_cid} (depth={depth})")
105
+ chain = []
106
+ current_cid = starting_cid
107
+ for _ in range(depth):
108
+ log = await self.permanent_memory.retrieve_memory_by_cid(current_cid)
109
+ if not log:
110
+ break
111
+ chain.append(log)
112
+ next_cid = log.get("content", {}).get("data", {}).get("source_processed_data_cid")
113
+ if not next_cid or next_cid == current_cid:
114
+ break
115
+ current_cid = next_cid
116
+ return chain
117
+
118
+ async def score_prediction_accuracy(self, prediction_logs: list[dict], actual_events: dict) -> dict:
119
+ logging.info(f"QCE ({self.engine_did}): Scoring prediction accuracy...")
120
+ scores = []
121
+ for log in prediction_logs:
122
+ try:
123
+ pred = log.get("content", {}).get("data", {}).get("prediction", {})
124
+ event_type = pred.get("event_type")
125
+ likelihood = pred.get("likelihood", 0.0)
126
+ impact = pred.get("impact_magnitude", 0.0)
127
+ actual = actual_events.get(event_type, {"occurred": False, "actual_impact": 0.0})
128
+ if actual["occurred"]:
129
+ accuracy = 1 - abs(actual["actual_impact"] - impact)
130
+ weight = likelihood
131
+ else:
132
+ accuracy = 1 - likelihood
133
+ weight = 1
134
+ scores.append(weight * accuracy)
135
+ except Exception as e:
136
+ logging.warning(f"Failed to score prediction: {e}")
137
+ continue
138
+ final_score = sum(scores) / len(scores) if scores else 0.0
139
+ return {"status": "scored", "average_accuracy": round(final_score, 4), "evaluated": len(scores)}
140
+
141
+ async def log_actual_event_and_score_predictions(self, event_type: str, occurred: bool, actual_impact: float, lookback_tags: list[str]) -> dict:
142
+ event = {
143
+ "event_type": event_type,
144
+ "occurred": occurred,
145
+ "actual_impact": actual_impact,
146
+ "timestamp": datetime.utcnow().isoformat() + "Z"
147
+ }
148
+ await self._log_event("ActualEventLogged", event, ["actual_event", event_type])
149
+ matching_predictions = await self.retrieve_memory_by_tags(["prediction", event_type])
150
+ score_result = await self.score_prediction_accuracy(matching_predictions, {event_type: {"occurred": occurred, "actual_impact": actual_impact}})
151
+ await self._log_event("PredictionAccuracyEvaluated", score_result, ["prediction_scoring", event_type])
152
+ return score_result
153
+
154
+ async def generate_self_improvement_plan(self, threshold: float = 0.5, min_predictions: int = 3) -> dict:
155
+ logging.info(f"QCE ({self.engine_did}): Generating self-improvement plan for weak prediction clusters...")
156
+ predictions = await self.retrieve_memory_by_tags(["prediction"])
157
+ grouped_scores = {}
158
+
159
+ for log in predictions:
160
+ pred = log.get("content", {}).get("data", {}).get("prediction", {})
161
+ event_type = pred.get("event_type")
162
+ if not event_type:
163
+ continue
164
+ grouped_scores.setdefault(event_type, []).append(pred)
165
+
166
+ weak_clusters = {}
167
+ for event_type, preds in grouped_scores.items():
168
+ if len(preds) >= min_predictions:
169
+ avg_impact = sum([p.get("impact_magnitude", 0.0) for p in preds]) / len(preds)
170
+ avg_likelihood = sum([p.get("likelihood", 0.0) for p in preds]) / len(preds)
171
+ if avg_likelihood < threshold:
172
+ weak_clusters[event_type] = {
173
+ "count": len(preds),
174
+ "average_impact": round(avg_impact, 4),
175
+ "average_likelihood": round(avg_likelihood, 4)
176
+ }
177
+
178
+ plan = {
179
+ "status": "plan_generated",
180
+ "detected_weak_clusters": weak_clusters,
181
+ "recommendation": "Increase attention to these event types using richer signal input, longer processing loops, or tuning emergent pattern weightings."
182
+ }
183
+
184
+ await self._log_event("SelfImprovementPlanGenerated", plan, ["self_improvement", "weak_clusters"])
185
+ return plan
186
+
187
+ async def auto_tune_signal_weights(self, learning_rate: float = 0.05) -> dict:
188
+ logging.info(f"QCE ({self.engine_did}): Auto-tuning signal interpretation weights...")
189
+ improvement_plan = await self.generate_self_improvement_plan()
190
+ adjustments = {}
191
+
192
+ for event_type, metrics in improvement_plan.get("detected_weak_clusters", {}).items():
193
+ adjustment = round((1.0 - metrics["average_likelihood"]) * learning_rate, 4)
194
+ adjustments[event_type] = {
195
+ "adjustment_weight": adjustment,
196
+ "action": "increase_attention"
197
+ }
198
+
199
+ tuning_log = {
200
+ "status": "tuning_applied",
201
+ "adjustments": adjustments,
202
+ "timestamp": datetime.utcnow().isoformat() + "Z"
203
+ }
204
+
205
+ await self._log_event("SignalWeightsAutoTuned", tuning_log, ["auto_tuning", "weight_adjustment"])
206
+ return tuning_log
207
+
208
+ async def suggest_additional_modules(self) -> list:
209
+ logging.info(f"QCE ({self.engine_did}): Suggesting additional modules for sentient enhancement...")
210
+ return [
211
+ "AnomalyDetectionAmplifier - Detect unclassified emergent patterns across unknown modalities",
212
+ "TemporalConvergenceModel - Learn from cyclical cosmic event clusters and trend emergence",
213
+ "RecursiveArchitectureTuner - Dynamically mutate internal inference algorithms",
214
+ "UniversalTransducerBridge - Interface with non-human signal schemas across galaxies",
215
+ "CausalInferenceLayer - Attribute cause-effect relationships from entangled data"
216
+ ]
217
+
218
+ async def recursive_architecture_tuner(self) -> dict:
219
+ logging.info(f"QCE ({self.engine_did}): Initiating recursive architecture evaluation...")
220
+
221
+ introspection = await self.generate_self_improvement_plan()
222
+ weak_clusters = introspection.get("detected_weak_clusters", {})
223
+ mutation_actions = {}
224
+
225
+ for event_type, metrics in weak_clusters.items():
226
+ mutation_actions[event_type] = {
227
+ "architecture_node": f"submodule_{event_type[:6]}",
228
+ "proposed_mutation": "increase processing depth",
229
+ "reason": f"Average likelihood too low ({metrics['average_likelihood']})"
230
+ }
231
+
232
+ mutation_plan = {
233
+ "status": "architecture_mutation_suggested",
234
+ "proposed_mutations": mutation_actions,
235
+ "initiated": datetime.utcnow().isoformat() + "Z"
236
+ }
237
+
238
+ await self._log_event("RecursiveArchitectureMutationProposed", mutation_plan, ["self_modification", "recursive_tuning"])
239
+ return mutation_plan
240
+
241
+ async def universal_transducer_bridge(self, incoming_payload: bytes, schema_hint: str = "unknown") -> dict:
242
+ logging.info(f"QCE ({self.engine_did}): Translating non-human schema: {schema_hint}")
243
+ simulated_interpretation = {
244
+ "schema_hint": schema_hint,
245
+ "decoded_waveform_class": np.random.choice(["emotion_flux", "intentional_beacon", "gravitational language"]),
246
+ "entropy_score": np.random.uniform(0.4, 0.95),
247
+ "translation_status": "partial",
248
+ "estimated_signal_purpose": "attempted synchronization"
249
+ }
250
+
251
+ await self._log_event("UniversalTransducerInterpretation", simulated_interpretation, ["signal_translation", schema_hint])
252
+ return simulated_interpretation