DRAFT: Add a fast tokenizer implementation and converter
#11
by
chielo
- opened
- tokenization_chatglm.py +256 -33
- tokenizer_config.json +2 -2
tokenization_chatglm.py
CHANGED
@@ -1,11 +1,37 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
import
|
4 |
-
from typing import List, Optional,
|
|
|
5 |
from sentencepiece import SentencePieceProcessor
|
6 |
-
from
|
7 |
-
from transformers
|
8 |
-
from transformers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
class SPTokenizer:
|
@@ -21,30 +47,15 @@ class SPTokenizer:
|
|
21 |
self.pad_id: int = self.sp_model.unk_id()
|
22 |
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
23 |
|
24 |
-
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
25 |
-
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
26 |
self.special_tokens = {}
|
27 |
self.index_special_tokens = {}
|
28 |
-
for token in
|
29 |
self.special_tokens[token] = self.n_words
|
30 |
self.index_special_tokens[self.n_words] = token
|
31 |
self.n_words += 1
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
if encode_special_tokens:
|
36 |
-
last_index = 0
|
37 |
-
t = []
|
38 |
-
for match in re.finditer(self.role_special_token_expression, s):
|
39 |
-
if last_index < match.start():
|
40 |
-
t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
|
41 |
-
t.append(s[match.start():match.end()])
|
42 |
-
last_index = match.end()
|
43 |
-
if last_index < len(s):
|
44 |
-
t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
|
45 |
-
return t
|
46 |
-
else:
|
47 |
-
return self.sp_model.EncodeAsPieces(s)
|
48 |
|
49 |
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
50 |
assert type(s) is str
|
@@ -93,8 +104,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
93 |
|
94 |
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
95 |
|
96 |
-
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False,
|
97 |
-
**kwargs):
|
98 |
self.name = "GLMTokenizer"
|
99 |
|
100 |
self.vocab_file = vocab_file
|
@@ -104,10 +114,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
104 |
"<eos>": self.tokenizer.eos_id,
|
105 |
"<pad>": self.tokenizer.pad_id
|
106 |
}
|
107 |
-
|
108 |
-
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
109 |
-
encode_special_tokens=encode_special_tokens,
|
110 |
-
**kwargs)
|
111 |
|
112 |
def get_command(self, token):
|
113 |
if token in self.special_tokens:
|
@@ -146,7 +153,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
146 |
return vocab
|
147 |
|
148 |
def _tokenize(self, text, **kwargs):
|
149 |
-
return self.tokenizer.tokenize(text
|
150 |
|
151 |
def _convert_token_to_id(self, token):
|
152 |
""" Converts a token (str) in an id using the vocab. """
|
@@ -188,8 +195,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
188 |
return (vocab_file,)
|
189 |
|
190 |
def get_prefix_tokens(self):
|
191 |
-
|
192 |
-
return prefix_tokens
|
193 |
|
194 |
def build_single_message(self, role, metadata, message):
|
195 |
assert role in ["system", "user", "assistant", "observation"], role
|
@@ -298,3 +304,220 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
298 |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
299 |
|
300 |
return encoded_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
import warnings
|
4 |
+
from typing import Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
from sentencepiece import SentencePieceProcessor
|
7 |
+
from tokenizers import AddedToken, decoders, normalizers, processors
|
8 |
+
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
|
9 |
+
from transformers.convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS, SpmConverter
|
10 |
+
from transformers.tokenization_utils_base import (
|
11 |
+
BatchEncoding,
|
12 |
+
EncodedInput,
|
13 |
+
PreTokenizedInput,
|
14 |
+
PreTokenizedInputPair,
|
15 |
+
TextInput,
|
16 |
+
TextInputPair,
|
17 |
+
TruncationStrategy,
|
18 |
+
)
|
19 |
+
from transformers.utils import PaddingStrategy
|
20 |
+
|
21 |
+
ADDITIONAL_SPECIAL_TOKENS = [
|
22 |
+
"[MASK]",
|
23 |
+
"[gMASK]",
|
24 |
+
"[sMASK]",
|
25 |
+
"<!sop!>",
|
26 |
+
"<!eop!>",
|
27 |
+
"<|system|>",
|
28 |
+
"<|user|>",
|
29 |
+
"<|assistant|>",
|
30 |
+
"<|observation|>",
|
31 |
+
]
|
32 |
+
PREFIX_TOKENS = ["[gMASK]", "<!sop!>"]
|
33 |
+
|
34 |
+
ENCODE_SEP_TOKEN_FOR_FAST = "<!encode-sep!>"
|
35 |
|
36 |
|
37 |
class SPTokenizer:
|
|
|
47 |
self.pad_id: int = self.sp_model.unk_id()
|
48 |
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
49 |
|
|
|
|
|
50 |
self.special_tokens = {}
|
51 |
self.index_special_tokens = {}
|
52 |
+
for token in ADDITIONAL_SPECIAL_TOKENS:
|
53 |
self.special_tokens[token] = self.n_words
|
54 |
self.index_special_tokens[self.n_words] = token
|
55 |
self.n_words += 1
|
56 |
+
|
57 |
+
def tokenize(self, s: str):
|
58 |
+
return self.sp_model.EncodeAsPieces(s)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
61 |
assert type(s) is str
|
|
|
104 |
|
105 |
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
106 |
|
107 |
+
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
|
|
|
108 |
self.name = "GLMTokenizer"
|
109 |
|
110 |
self.vocab_file = vocab_file
|
|
|
114 |
"<eos>": self.tokenizer.eos_id,
|
115 |
"<pad>": self.tokenizer.pad_id
|
116 |
}
|
117 |
+
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
|
|
|
|
|
|
|
118 |
|
119 |
def get_command(self, token):
|
120 |
if token in self.special_tokens:
|
|
|
153 |
return vocab
|
154 |
|
155 |
def _tokenize(self, text, **kwargs):
|
156 |
+
return self.tokenizer.tokenize(text)
|
157 |
|
158 |
def _convert_token_to_id(self, token):
|
159 |
""" Converts a token (str) in an id using the vocab. """
|
|
|
195 |
return (vocab_file,)
|
196 |
|
197 |
def get_prefix_tokens(self):
|
198 |
+
return list(map(self.get_command, PREFIX_TOKENS))
|
|
|
199 |
|
200 |
def build_single_message(self, role, metadata, message):
|
201 |
assert role in ["system", "user", "assistant", "observation"], role
|
|
|
304 |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
305 |
|
306 |
return encoded_inputs
|
307 |
+
|
308 |
+
|
309 |
+
class ChatGLMTokenizerFast(PreTrainedTokenizerFast):
|
310 |
+
# multiple breaking changes, no more backward-compatibility
|
311 |
+
slow_tokenizer_class = ChatGLMTokenizer
|
312 |
+
vocab_files_names = {
|
313 |
+
**ChatGLMTokenizer.vocab_files_names,
|
314 |
+
**PreTrainedTokenizerFast.vocab_files_names,
|
315 |
+
}
|
316 |
+
|
317 |
+
def __init__(self, **kwargs):
|
318 |
+
kwargs.setdefault("clean_up_tokenization_spaces", False)
|
319 |
+
kwargs.setdefault("bos_token", "<s>")
|
320 |
+
kwargs.setdefault("eos_token", "</s>")
|
321 |
+
kwargs.setdefault("unk_token", "<unk>")
|
322 |
+
kwargs.setdefault("pad_token", "<unk>")
|
323 |
+
super().__init__(**kwargs)
|
324 |
+
|
325 |
+
@property
|
326 |
+
def encode_sep_token(self):
|
327 |
+
return ENCODE_SEP_TOKEN_FOR_FAST
|
328 |
+
|
329 |
+
def _batch_encode_plus(
|
330 |
+
self,
|
331 |
+
batch_text_or_text_pairs: Union[
|
332 |
+
List[TextInput],
|
333 |
+
List[TextInputPair],
|
334 |
+
List[PreTokenizedInput],
|
335 |
+
List[PreTokenizedInputPair],
|
336 |
+
],
|
337 |
+
add_special_tokens: bool = True,
|
338 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
339 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
340 |
+
max_length: Optional[int] = None,
|
341 |
+
stride: int = 0,
|
342 |
+
is_split_into_words: bool = False,
|
343 |
+
pad_to_multiple_of: Optional[int] = None,
|
344 |
+
return_tensors: Optional[str] = None,
|
345 |
+
return_token_type_ids: Optional[bool] = None,
|
346 |
+
return_attention_mask: Optional[bool] = None,
|
347 |
+
return_overflowing_tokens: bool = False,
|
348 |
+
return_special_tokens_mask: bool = False,
|
349 |
+
return_offsets_mapping: bool = False,
|
350 |
+
return_length: bool = False,
|
351 |
+
verbose: bool = True,
|
352 |
+
) -> BatchEncoding:
|
353 |
+
def split_sep(t: Union[TextInput, PreTokenizedInput]) -> PreTokenizedInput:
|
354 |
+
if isinstance(t, str):
|
355 |
+
return t.split(self.encode_sep_token)
|
356 |
+
|
357 |
+
return [w for word in t for w in split_sep(word)]
|
358 |
+
|
359 |
+
def split_maybe_tupled(
|
360 |
+
t: Union[TextInput, TextInputPair, PreTokenizedInput, PreTokenizedInputPair]
|
361 |
+
) -> Union[PreTokenizedInputPair, PreTokenizedInput]:
|
362 |
+
if isinstance(t, tuple):
|
363 |
+
return split_sep(t[0]), split_sep(t[1])
|
364 |
+
|
365 |
+
return split_sep(t)
|
366 |
+
|
367 |
+
return super()._batch_encode_plus(
|
368 |
+
list(map(split_maybe_tupled, batch_text_or_text_pairs)), # pyright: ignore
|
369 |
+
add_special_tokens,
|
370 |
+
padding_strategy,
|
371 |
+
truncation_strategy,
|
372 |
+
max_length,
|
373 |
+
stride,
|
374 |
+
True,
|
375 |
+
pad_to_multiple_of,
|
376 |
+
return_tensors,
|
377 |
+
return_token_type_ids,
|
378 |
+
return_attention_mask,
|
379 |
+
return_overflowing_tokens,
|
380 |
+
return_special_tokens_mask,
|
381 |
+
return_offsets_mapping,
|
382 |
+
return_length,
|
383 |
+
verbose,
|
384 |
+
)
|
385 |
+
|
386 |
+
@property
|
387 |
+
def can_save_slow_tokenizer(self) -> bool:
|
388 |
+
# multiple breaking changes
|
389 |
+
return False
|
390 |
+
|
391 |
+
def save_pretrained(
|
392 |
+
self,
|
393 |
+
save_directory: Union[str, os.PathLike],
|
394 |
+
legacy_format: Optional[bool] = None,
|
395 |
+
filename_prefix: Optional[str] = None,
|
396 |
+
push_to_hub: bool = False,
|
397 |
+
**kwargs,
|
398 |
+
) -> Tuple[str]:
|
399 |
+
warnings.warn(
|
400 |
+
f"{type(self)} does not support saving slow tokenizer. "
|
401 |
+
"Saving it at the same directory may break the slow tokenizer. "
|
402 |
+
"Please keep a backup of the original tokenizer beforehand."
|
403 |
+
)
|
404 |
+
return super().save_pretrained(
|
405 |
+
save_directory, legacy_format, filename_prefix, push_to_hub, **kwargs
|
406 |
+
)
|
407 |
+
|
408 |
+
def build_single_message(self, role, metadata, message):
|
409 |
+
assert role in ["system", "user", "assistant", "observation"], role
|
410 |
+
return f"<|{role}|>{self.encode_sep_token}{metadata}\n{self.encode_sep_token}{message}"
|
411 |
+
|
412 |
+
def build_chat_text(self, query, history=None, role="user", metadata=""):
|
413 |
+
inputs = []
|
414 |
+
|
415 |
+
for item in history or []:
|
416 |
+
content = item["content"]
|
417 |
+
|
418 |
+
if item["role"] == "system" and "tools" in item:
|
419 |
+
content += "\n" + json.dumps(
|
420 |
+
item["tools"], indent=4, ensure_ascii=False
|
421 |
+
)
|
422 |
+
|
423 |
+
inputs.append(
|
424 |
+
self.build_single_message(
|
425 |
+
item["role"], item.get("metadata", ""), content
|
426 |
+
)
|
427 |
+
)
|
428 |
+
|
429 |
+
inputs.append(self.build_single_message(role, metadata, query))
|
430 |
+
inputs.append("<|assistant|>")
|
431 |
+
|
432 |
+
return "".join(inputs)
|
433 |
+
|
434 |
+
def build_chat_input(self, *args, **kwargs):
|
435 |
+
return self.batch_encode_plus(
|
436 |
+
[self.build_chat_text(*args, **kwargs)],
|
437 |
+
return_tensors="pt",
|
438 |
+
)
|
439 |
+
|
440 |
+
|
441 |
+
ChatGLMTokenizer.register_for_auto_class()
|
442 |
+
ChatGLMTokenizerFast.register_for_auto_class()
|
443 |
+
|
444 |
+
|
445 |
+
class ChatGLMTokenizerConverter(SpmConverter):
|
446 |
+
handle_byte_fallback = True
|
447 |
+
|
448 |
+
def normalizer(self, proto):
|
449 |
+
return normalizers.Sequence(
|
450 |
+
[
|
451 |
+
normalizers.Prepend(prepend="▁"),
|
452 |
+
normalizers.Replace(pattern=" ", content="▁"),
|
453 |
+
]
|
454 |
+
)
|
455 |
+
|
456 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
457 |
+
# don't use Metaspace, it will skip merging spaces into one token
|
458 |
+
|
459 |
+
# give up to split `encode_sep_token` here, buggy
|
460 |
+
# return pre_tokenizers.Split(ENCODE_SEP_TOKEN_FOR_FAST, "removed")
|
461 |
+
|
462 |
+
return None
|
463 |
+
|
464 |
+
def decoder(self, replacement, add_prefix_space):
|
465 |
+
return decoders.Sequence(
|
466 |
+
[
|
467 |
+
decoders.ByteFallback(),
|
468 |
+
super().decoder(replacement, add_prefix_space),
|
469 |
+
]
|
470 |
+
)
|
471 |
+
|
472 |
+
def tokenizer(self, proto):
|
473 |
+
tokenizer = super().tokenizer(proto)
|
474 |
+
|
475 |
+
tokenizer.model.byte_fallback = True
|
476 |
+
|
477 |
+
special_tokens = [
|
478 |
+
"<unk>",
|
479 |
+
"<s>",
|
480 |
+
"</s>",
|
481 |
+
*ADDITIONAL_SPECIAL_TOKENS,
|
482 |
+
]
|
483 |
+
|
484 |
+
tokenizer.add_special_tokens(
|
485 |
+
[
|
486 |
+
AddedToken(token, special=True, normalized=False)
|
487 |
+
for token in special_tokens
|
488 |
+
]
|
489 |
+
)
|
490 |
+
|
491 |
+
return tokenizer
|
492 |
+
|
493 |
+
def converted(self):
|
494 |
+
tokenizer = super().converted()
|
495 |
+
|
496 |
+
# Post processors
|
497 |
+
prefix_token_ids = list(map(tokenizer.token_to_id, PREFIX_TOKENS))
|
498 |
+
assert all(i is not None for i in prefix_token_ids)
|
499 |
+
prefix_template = " ".join(PREFIX_TOKENS)
|
500 |
+
|
501 |
+
template_special_tokens = list(frozenset(zip(PREFIX_TOKENS, prefix_token_ids)))
|
502 |
+
|
503 |
+
if "</s>" not in PREFIX_TOKENS:
|
504 |
+
eos_token_id = tokenizer.token_to_id("</s>")
|
505 |
+
assert eos_token_id is not None
|
506 |
+
template_special_tokens.append(("</s>", eos_token_id))
|
507 |
+
|
508 |
+
post = processors.TemplateProcessing(
|
509 |
+
single=f"{prefix_template} $A",
|
510 |
+
pair=f"{prefix_template} $A $B:1 </s>:1",
|
511 |
+
special_tokens=template_special_tokens,
|
512 |
+
)
|
513 |
+
if tokenizer.post_processor is None:
|
514 |
+
tokenizer.post_processor = post
|
515 |
+
else:
|
516 |
+
tokenizer.post_processor = processors.Sequence(
|
517 |
+
[tokenizer.post_processor, post]
|
518 |
+
)
|
519 |
+
|
520 |
+
return tokenizer
|
521 |
+
|
522 |
+
|
523 |
+
SLOW_TO_FAST_CONVERTERS[ChatGLMTokenizer.__name__] = ChatGLMTokenizerConverter
|
tokenizer_config.json
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
"auto_map": {
|
7 |
"AutoTokenizer": [
|
8 |
"tokenization_chatglm.ChatGLMTokenizer",
|
9 |
-
|
10 |
-
|
11 |
}
|
12 |
}
|
|
|
6 |
"auto_map": {
|
7 |
"AutoTokenizer": [
|
8 |
"tokenization_chatglm.ChatGLMTokenizer",
|
9 |
+
"tokenization_chatglm.ChatGLMTokenizerFast"
|
10 |
+
]
|
11 |
}
|
12 |
}
|