|
--- |
|
language: |
|
- zh |
|
- en |
|
tags: |
|
- glm |
|
- chatglm |
|
- thudm |
|
--- |
|
# ChatGLM3-6B-Base |
|
<p align="center"> |
|
💻 <a href="https://github.com/THUDM/ChatGLM" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/thukeg" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2103.10360" target="_blank">[GLM@ACL 22]</a> <a href="https://github.com/THUDM/GLM" target="_blank">[GitHub]</a> • 📃 <a href="https://arxiv.org/abs/2210.02414" target="_blank">[GLM-130B@ICLR 23]</a> <a href="https://github.com/THUDM/GLM-130B" target="_blank">[GitHub]</a> <br> |
|
</p> |
|
|
|
<p align="center"> |
|
👋 Join our <a href="https://join.slack.com/t/chatglm/shared_invite/zt-25ti5uohv-A_hs~am_D3Q8XPZMpj7wwQ" target="_blank">Slack</a> and <a href="https://github.com/THUDM/ChatGLM/blob/main/resources/WECHAT.md" target="_blank">WeChat</a> |
|
</p> |
|
<p align="center"> |
|
📍Experience the larger-scale ChatGLM model at <a href="https://www.chatglm.cn">chatglm.cn</a> |
|
</p> |
|
|
|
## 介绍 |
|
ChatGLM3-6B 是 ChatGLM 系列最新一代的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性: |
|
|
|
1. **更强大的基础模型:** ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的预训练模型中最强的性能。 |
|
2. **更完整的功能支持:** ChatGLM3-6B 采用了全新设计的 [Prompt 格式](PROMPT.md),除正常的多轮对话外。同时原生支持[工具调用](tool_using/README.md)(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。 |
|
3. **更全面的开源序列:** 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM-6B-Base、长文本对话模型 ChatGLM3-6B-32K。以上所有权重对学术研究**完全开放**,在填写[问卷](https://open.bigmodel.cn/mla/form)进行登记后**亦允许免费商业使用**。 |
|
|
|
本仓库为 ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base。 |
|
|
|
## 软件依赖 |
|
|
|
```shell |
|
pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate |
|
``` |
|
|
|
## 代码调用 |
|
|
|
作为没有经过人类意图对齐的模型,ChatGLM3-6B-Base 不能用于多轮对话。但是可以进行文本续写。 |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-base", trust_remote_code=True) |
|
model = AutoModel.from_pretrained("THUDM/chatglm3-6b-base", trust_remote_code=True).half().cuda() |
|
|
|
inputs = tokenizer(["今天天气真不错"], return_tensors="pt").to('cuda') |
|
outputs = model.generate(**inputs) |
|
print(tokenizer.decode(outputs[0].tolist())) |
|
``` |
|
|
|
关于更多的使用说明,包括如何运行命令行和网页版本的 DEMO,以及使用模型量化以节省显存,请参考我们的 [Github Repo](https://github.com/THUDM/ChatGLM)。 |
|
|
|
For more instructions, including how to run CLI and web demos, and model quantization, please refer to our [Github Repo](https://github.com/THUDM/ChatGLM). |
|
|
|
|
|
## 协议 |
|
|
|
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源,ChatGLM3-6B 模型的权重的使用则需要遵循 [Model License](MODEL_LICENSE)。 |
|
|
|
## 引用 |
|
|
|
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。 |
|
|
|
``` |
|
@article{zeng2022glm, |
|
title={Glm-130b: An open bilingual pre-trained model}, |
|
author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others}, |
|
journal={arXiv preprint arXiv:2210.02414}, |
|
year={2022} |
|
} |
|
``` |
|
``` |
|
@inproceedings{du2022glm, |
|
title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling}, |
|
author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie}, |
|
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, |
|
pages={320--335}, |
|
year={2022} |
|
} |
|
``` |
|
|