Add `ChatGLMTokenizerFast` and `ChatGLMTokenizerConverter`
#9
by
chielo
- opened
- tokenization_chatglm.py +251 -28
- tokenizer_config.json +2 -2
tokenization_chatglm.py
CHANGED
@@ -1,13 +1,39 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
import
|
4 |
from typing import List, Optional, Union, Dict
|
5 |
from sentencepiece import SentencePieceProcessor
|
6 |
-
from transformers import PreTrainedTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from transformers.utils import logging, PaddingStrategy
|
8 |
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
class SPTokenizer:
|
12 |
def __init__(self, model_path: str):
|
13 |
# reload tokenizer
|
@@ -21,17 +47,29 @@ class SPTokenizer:
|
|
21 |
self.pad_id: int = self.sp_model.unk_id()
|
22 |
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
23 |
|
24 |
-
special_tokens =
|
25 |
-
"<|observation|>"]
|
26 |
self.special_tokens = {}
|
27 |
self.index_special_tokens = {}
|
28 |
for token in special_tokens:
|
29 |
self.special_tokens[token] = self.n_words
|
30 |
self.index_special_tokens[self.n_words] = token
|
31 |
self.n_words += 1
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
37 |
assert type(s) is str
|
@@ -70,27 +108,40 @@ class SPTokenizer:
|
|
70 |
"""Converts an index (integer) in a token (str) using the vocab."""
|
71 |
if index in self.index_special_tokens:
|
72 |
return self.index_special_tokens[index]
|
73 |
-
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
|
74 |
return ""
|
75 |
return self.sp_model.IdToPiece(index)
|
76 |
|
77 |
|
78 |
class ChatGLMTokenizer(PreTrainedTokenizer):
|
79 |
-
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
80 |
|
|
|
81 |
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
82 |
|
83 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
self.name = "GLMTokenizer"
|
85 |
-
|
86 |
self.vocab_file = vocab_file
|
87 |
self.tokenizer = SPTokenizer(vocab_file)
|
88 |
self.special_tokens = {
|
89 |
"<bos>": self.tokenizer.bos_id,
|
90 |
"<eos>": self.tokenizer.eos_id,
|
|
|
91 |
"<pad>": self.tokenizer.pad_id
|
92 |
}
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
def get_command(self, token):
|
96 |
if token in self.special_tokens:
|
@@ -100,24 +151,40 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
100 |
|
101 |
@property
|
102 |
def unk_token(self) -> str:
|
103 |
-
return "<unk>"
|
104 |
|
105 |
@property
|
106 |
def pad_token(self) -> str:
|
107 |
-
return "<
|
108 |
|
109 |
@property
|
110 |
-
def
|
111 |
-
return self.get_command("<
|
112 |
|
113 |
@property
|
114 |
-
def
|
115 |
-
return "
|
|
|
|
|
|
|
|
|
116 |
|
117 |
@property
|
118 |
def eos_token_id(self):
|
119 |
return self.get_command("<eos>")
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
@property
|
122 |
def vocab_size(self):
|
123 |
return self.tokenizer.n_words
|
@@ -129,7 +196,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
129 |
return vocab
|
130 |
|
131 |
def _tokenize(self, text, **kwargs):
|
132 |
-
return self.tokenizer.tokenize(text)
|
133 |
|
134 |
def _convert_token_to_id(self, token):
|
135 |
""" Converts a token (str) in an id using the vocab. """
|
@@ -171,8 +238,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
171 |
return (vocab_file,)
|
172 |
|
173 |
def get_prefix_tokens(self):
|
174 |
-
|
175 |
-
return prefix_tokens
|
176 |
|
177 |
def build_single_message(self, role, metadata, message):
|
178 |
assert role in ["system", "user", "assistant", "observation"], role
|
@@ -195,7 +261,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
195 |
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
196 |
|
197 |
def build_inputs_with_special_tokens(
|
198 |
-
|
199 |
) -> List[int]:
|
200 |
"""
|
201 |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
@@ -220,12 +286,12 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
220 |
return token_ids_0
|
221 |
|
222 |
def _pad(
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
) -> dict:
|
230 |
"""
|
231 |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
@@ -281,3 +347,160 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
281 |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
282 |
|
283 |
return encoded_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
import re
|
4 |
from typing import List, Optional, Union, Dict
|
5 |
from sentencepiece import SentencePieceProcessor
|
6 |
+
from transformers import AddedToken, PreTrainedTokenizer, PreTrainedTokenizerFast
|
7 |
+
from transformers.convert_slow_tokenizer import (
|
8 |
+
SLOW_TO_FAST_CONVERTERS,
|
9 |
+
SpmConverter,
|
10 |
+
decoders,
|
11 |
+
normalizers,
|
12 |
+
pre_tokenizers,
|
13 |
+
processors,
|
14 |
+
)
|
15 |
from transformers.utils import logging, PaddingStrategy
|
16 |
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
17 |
|
18 |
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
ADDITIONAL_SPECIAL_TOKENS = [
|
22 |
+
"[MASK]",
|
23 |
+
"[gMASK]",
|
24 |
+
"[sMASK]",
|
25 |
+
"<!sop!>",
|
26 |
+
"<!eop!>",
|
27 |
+
"<|system|>",
|
28 |
+
"<|user|>",
|
29 |
+
"<|assistant|>",
|
30 |
+
"<|observation|>",
|
31 |
+
]
|
32 |
+
PREFIX_TOKENS = ["[gMASK]", "<!sop!>"]
|
33 |
+
|
34 |
+
DUMMY_PREFIX_INDICATOR_FOR_FAST = "<!dummy-prefix!>"
|
35 |
+
|
36 |
+
|
37 |
class SPTokenizer:
|
38 |
def __init__(self, model_path: str):
|
39 |
# reload tokenizer
|
|
|
47 |
self.pad_id: int = self.sp_model.unk_id()
|
48 |
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
49 |
|
50 |
+
special_tokens = ADDITIONAL_SPECIAL_TOKENS
|
|
|
51 |
self.special_tokens = {}
|
52 |
self.index_special_tokens = {}
|
53 |
for token in special_tokens:
|
54 |
self.special_tokens[token] = self.n_words
|
55 |
self.index_special_tokens[self.n_words] = token
|
56 |
self.n_words += 1
|
57 |
+
self.role_special_token_expression = "|".join([re.escape(token) for token in special_tokens]) # for apply_chat_template
|
58 |
+
|
59 |
+
def tokenize(self, s: str, encode_special_tokens=False):
|
60 |
+
if encode_special_tokens:
|
61 |
+
last_index = 0
|
62 |
+
t = []
|
63 |
+
for match in re.finditer(self.role_special_token_expression, s):
|
64 |
+
if last_index < match.start():
|
65 |
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
|
66 |
+
t.append(s[match.start():match.end()])
|
67 |
+
last_index = match.end()
|
68 |
+
if last_index < len(s):
|
69 |
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
|
70 |
+
return t
|
71 |
+
else:
|
72 |
+
return self.sp_model.EncodeAsPieces(s)
|
73 |
|
74 |
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
75 |
assert type(s) is str
|
|
|
108 |
"""Converts an index (integer) in a token (str) using the vocab."""
|
109 |
if index in self.index_special_tokens:
|
110 |
return self.index_special_tokens[index]
|
111 |
+
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0 or index >= self.sp_model.vocab_size():
|
112 |
return ""
|
113 |
return self.sp_model.IdToPiece(index)
|
114 |
|
115 |
|
116 |
class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
|
117 |
|
118 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
119 |
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
120 |
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
vocab_file,
|
124 |
+
padding_side="left",
|
125 |
+
clean_up_tokenization_spaces=False,
|
126 |
+
encode_special_tokens=False,
|
127 |
+
**kwargs
|
128 |
+
):
|
129 |
self.name = "GLMTokenizer"
|
|
|
130 |
self.vocab_file = vocab_file
|
131 |
self.tokenizer = SPTokenizer(vocab_file)
|
132 |
self.special_tokens = {
|
133 |
"<bos>": self.tokenizer.bos_id,
|
134 |
"<eos>": self.tokenizer.eos_id,
|
135 |
+
"<unk>": self.tokenizer.pad_id,
|
136 |
"<pad>": self.tokenizer.pad_id
|
137 |
}
|
138 |
+
self.encode_special_tokens = encode_special_tokens
|
139 |
+
|
140 |
+
super().__init__(
|
141 |
+
padding_side=padding_side,
|
142 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
143 |
+
**kwargs
|
144 |
+
)
|
145 |
|
146 |
def get_command(self, token):
|
147 |
if token in self.special_tokens:
|
|
|
151 |
|
152 |
@property
|
153 |
def unk_token(self) -> str:
|
154 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<unk>"))
|
155 |
|
156 |
@property
|
157 |
def pad_token(self) -> str:
|
158 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<pad>"))
|
159 |
|
160 |
@property
|
161 |
+
def eos_token(self) -> str:
|
162 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<eos>"))
|
163 |
|
164 |
@property
|
165 |
+
def unk_token_id(self) -> int:
|
166 |
+
return self.get_command("<unk>")
|
167 |
+
|
168 |
+
@property
|
169 |
+
def pad_token_id(self) -> int:
|
170 |
+
return self.get_command("<pad>")
|
171 |
|
172 |
@property
|
173 |
def eos_token_id(self):
|
174 |
return self.get_command("<eos>")
|
175 |
|
176 |
+
@unk_token.setter
|
177 |
+
def unk_token(self, value):
|
178 |
+
logger.warning("Setting unk_token is not supported, use the default one.")
|
179 |
+
|
180 |
+
@pad_token.setter
|
181 |
+
def pad_token(self, value):
|
182 |
+
logger.warning("Setting pad_token is not supported, use the default one.")
|
183 |
+
|
184 |
+
@eos_token.setter
|
185 |
+
def eos_token(self, value):
|
186 |
+
logger.warning("Setting eos_token is not supported, use the default one.")
|
187 |
+
|
188 |
@property
|
189 |
def vocab_size(self):
|
190 |
return self.tokenizer.n_words
|
|
|
196 |
return vocab
|
197 |
|
198 |
def _tokenize(self, text, **kwargs):
|
199 |
+
return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
|
200 |
|
201 |
def _convert_token_to_id(self, token):
|
202 |
""" Converts a token (str) in an id using the vocab. """
|
|
|
238 |
return (vocab_file,)
|
239 |
|
240 |
def get_prefix_tokens(self):
|
241 |
+
return list(map(self.get_command, PREFIX_TOKENS))
|
|
|
242 |
|
243 |
def build_single_message(self, role, metadata, message):
|
244 |
assert role in ["system", "user", "assistant", "observation"], role
|
|
|
261 |
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
262 |
|
263 |
def build_inputs_with_special_tokens(
|
264 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
265 |
) -> List[int]:
|
266 |
"""
|
267 |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
|
286 |
return token_ids_0
|
287 |
|
288 |
def _pad(
|
289 |
+
self,
|
290 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
291 |
+
max_length: Optional[int] = None,
|
292 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
293 |
+
pad_to_multiple_of: Optional[int] = None,
|
294 |
+
return_attention_mask: Optional[bool] = None,
|
295 |
) -> dict:
|
296 |
"""
|
297 |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
|
|
347 |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
348 |
|
349 |
return encoded_inputs
|
350 |
+
|
351 |
+
|
352 |
+
class ChatGLMTokenizerFast(PreTrainedTokenizerFast):
|
353 |
+
# multiple breaking changes, no backward-compatibility
|
354 |
+
slow_tokenizer_class = ChatGLMTokenizer
|
355 |
+
vocab_files_names = {
|
356 |
+
**ChatGLMTokenizer.vocab_files_names,
|
357 |
+
**PreTrainedTokenizerFast.vocab_files_names,
|
358 |
+
}
|
359 |
+
|
360 |
+
def __init__(self, **kwargs):
|
361 |
+
kwargs.setdefault("clean_up_tokenization_spaces", False)
|
362 |
+
kwargs.setdefault("bos_token", "<s>")
|
363 |
+
kwargs.setdefault("eos_token", "</s>")
|
364 |
+
kwargs.setdefault("unk_token", "<unk>")
|
365 |
+
kwargs.setdefault("pad_token", "<unk>")
|
366 |
+
super().__init__(**kwargs)
|
367 |
+
|
368 |
+
@property
|
369 |
+
def dummy_prefix_indicator(self):
|
370 |
+
return DUMMY_PREFIX_INDICATOR_FOR_FAST
|
371 |
+
|
372 |
+
@property
|
373 |
+
def can_save_slow_tokenizer(self) -> bool:
|
374 |
+
# multiple breaking changes
|
375 |
+
return False
|
376 |
+
|
377 |
+
def save_pretrained(self, *args, **kwargs):
|
378 |
+
if not self.can_save_slow_tokenizer:
|
379 |
+
logger.warning(
|
380 |
+
f"{type(self).__name__} does not support saving slow tokenizer. "
|
381 |
+
"Saving it at the same directory may break the original tokenizer. "
|
382 |
+
"Please keep a backup beforehand."
|
383 |
+
)
|
384 |
+
|
385 |
+
return super().save_pretrained(*args, **kwargs)
|
386 |
+
|
387 |
+
def build_single_message_prompt(self, role, metadata, message):
|
388 |
+
assert role in ["system", "user", "assistant", "observation"], role
|
389 |
+
return (
|
390 |
+
f"<|{role}|>"
|
391 |
+
f"{self.dummy_prefix_indicator}{metadata}\n"
|
392 |
+
f"{self.dummy_prefix_indicator}{message}"
|
393 |
+
)
|
394 |
+
|
395 |
+
def build_chat_prompt(self, query, history=None, role="user", metadata=""):
|
396 |
+
inputs = []
|
397 |
+
|
398 |
+
for item in history or []:
|
399 |
+
content = item["content"]
|
400 |
+
|
401 |
+
if item["role"] == "system" and "tools" in item:
|
402 |
+
content += "\n" + json.dumps(
|
403 |
+
item["tools"], indent=4, ensure_ascii=False
|
404 |
+
)
|
405 |
+
|
406 |
+
inputs.append(
|
407 |
+
self.build_single_message_prompt(
|
408 |
+
item["role"], item.get("metadata", ""), content
|
409 |
+
)
|
410 |
+
)
|
411 |
+
|
412 |
+
inputs.append(self.build_single_message_prompt(role, metadata, query))
|
413 |
+
inputs.append("<|assistant|>")
|
414 |
+
|
415 |
+
return "".join(inputs)
|
416 |
+
|
417 |
+
def build_chat_input(self, *args, **kwargs):
|
418 |
+
return self.batch_encode_plus(
|
419 |
+
[self.build_chat_prompt(*args, **kwargs)],
|
420 |
+
return_tensors="pt",
|
421 |
+
)
|
422 |
+
|
423 |
+
|
424 |
+
ChatGLMTokenizer.register_for_auto_class()
|
425 |
+
ChatGLMTokenizerFast.register_for_auto_class()
|
426 |
+
|
427 |
+
|
428 |
+
class ChatGLMTokenizerConverter(SpmConverter):
|
429 |
+
handle_byte_fallback = True
|
430 |
+
|
431 |
+
def normalizer(self, proto):
|
432 |
+
return normalizers.Sequence(
|
433 |
+
[
|
434 |
+
normalizers.Replace(
|
435 |
+
pattern=DUMMY_PREFIX_INDICATOR_FOR_FAST, content="β"
|
436 |
+
),
|
437 |
+
normalizers.Replace(pattern=" ", content="β"),
|
438 |
+
]
|
439 |
+
)
|
440 |
+
|
441 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
442 |
+
# NOTE: don't use Metaspace, it won't merge spaces into one token
|
443 |
+
# without Metaspace: " " => ["ββ"]
|
444 |
+
# with Metaspace: " " => ["β", "β"]
|
445 |
+
return pre_tokenizers.Split(DUMMY_PREFIX_INDICATOR_FOR_FAST, "merged_with_next")
|
446 |
+
|
447 |
+
def decoder(self, replacement, add_prefix_space):
|
448 |
+
return decoders.Sequence(
|
449 |
+
[
|
450 |
+
decoders.ByteFallback(),
|
451 |
+
decoders.Metaspace(replacement="β", add_prefix_space=True),
|
452 |
+
]
|
453 |
+
)
|
454 |
+
|
455 |
+
def tokenizer(self, proto):
|
456 |
+
tokenizer = super().tokenizer(proto)
|
457 |
+
|
458 |
+
tokenizer.model.byte_fallback = True
|
459 |
+
|
460 |
+
assert tokenizer.token_to_id("<unk>") == 0
|
461 |
+
assert tokenizer.token_to_id("<s>") == 1
|
462 |
+
assert tokenizer.token_to_id("</s>") == 2
|
463 |
+
special_tokens = [
|
464 |
+
"<unk>",
|
465 |
+
"<s>",
|
466 |
+
"</s>",
|
467 |
+
*ADDITIONAL_SPECIAL_TOKENS,
|
468 |
+
]
|
469 |
+
|
470 |
+
tokenizer.add_special_tokens(
|
471 |
+
[AddedToken(token, special=True) for token in special_tokens]
|
472 |
+
)
|
473 |
+
|
474 |
+
return tokenizer
|
475 |
+
|
476 |
+
def converted(self):
|
477 |
+
tokenizer = super().converted()
|
478 |
+
|
479 |
+
# Post processors
|
480 |
+
prefix_token_ids = list(map(tokenizer.token_to_id, PREFIX_TOKENS))
|
481 |
+
assert all(i is not None for i in prefix_token_ids)
|
482 |
+
prefix_template = " ".join(PREFIX_TOKENS)
|
483 |
+
|
484 |
+
template_special_tokens = list(frozenset(zip(PREFIX_TOKENS, prefix_token_ids)))
|
485 |
+
|
486 |
+
if "</s>" not in PREFIX_TOKENS:
|
487 |
+
eos_token_id = tokenizer.token_to_id("</s>")
|
488 |
+
assert eos_token_id is not None
|
489 |
+
template_special_tokens.append(("</s>", eos_token_id))
|
490 |
+
|
491 |
+
post = processors.TemplateProcessing(
|
492 |
+
single=f"{prefix_template} $A",
|
493 |
+
pair=f"{prefix_template} $A $B:1 </s>:1",
|
494 |
+
special_tokens=template_special_tokens,
|
495 |
+
)
|
496 |
+
if tokenizer.post_processor is None:
|
497 |
+
tokenizer.post_processor = post
|
498 |
+
else:
|
499 |
+
tokenizer.post_processor = processors.Sequence(
|
500 |
+
[tokenizer.post_processor, post]
|
501 |
+
)
|
502 |
+
|
503 |
+
return tokenizer
|
504 |
+
|
505 |
+
|
506 |
+
SLOW_TO_FAST_CONVERTERS[ChatGLMTokenizer.__name__] = ChatGLMTokenizerConverter
|
tokenizer_config.json
CHANGED
@@ -7,7 +7,7 @@
|
|
7 |
"auto_map": {
|
8 |
"AutoTokenizer": [
|
9 |
"tokenization_chatglm.ChatGLMTokenizer",
|
10 |
-
|
11 |
-
|
12 |
}
|
13 |
}
|
|
|
7 |
"auto_map": {
|
8 |
"AutoTokenizer": [
|
9 |
"tokenization_chatglm.ChatGLMTokenizer",
|
10 |
+
"tokenization_chatglm.ChatGLMTokenizerFast"
|
11 |
+
]
|
12 |
}
|
13 |
}
|