Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: fxmarty/small-llama-testing
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- format: custom
  path: argilla/databricks-dolly-15k-curated-en
  type:
    field_input: original-instruction
    field_instruction: original-instruction
    field_output: original-response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
eval_steps: 20
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: SystemAdmin123/test-repo
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
micro_batch_size: 19
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/configs
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 40
save_total_limit: 1
sequence_len: 2048
special_tokens:
  pad_token: </s>
tokenizer_type: LlamaTokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: fxmarty/small-llama-testing-argilla/databricks-dolly-15k-curated-en
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true

test-repo

This model is a fine-tuned version of fxmarty/small-llama-testing on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 6.0848

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 19
  • eval_batch_size: 19
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 152
  • total_eval_batch_size: 152
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 26
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
No log 0.0112 1 10.4228
10.127 0.2247 20 9.8632
9.0393 0.4494 40 8.7403
8.1127 0.6742 60 7.9189
7.5513 0.8989 80 7.4579
7.2769 1.1236 100 7.2770
7.1384 1.3483 120 7.1767
7.0576 1.5730 140 7.0575
6.9564 1.7978 160 6.9379
6.8785 2.0225 180 6.8208
6.7027 2.2472 200 6.7212
6.5913 2.4719 220 6.6362
6.498 2.6966 240 6.5572
6.4453 2.9213 260 6.4721
6.2635 3.1461 280 6.4126
6.236 3.3708 300 6.3658
6.2733 3.5955 320 6.3162
6.2472 3.8202 340 6.2870
6.1738 4.0449 360 6.2401
6.0509 4.2697 380 6.2184
6.0158 4.4944 400 6.1959
6.0043 4.7191 420 6.1770
6.0249 4.9438 440 6.1570
5.9625 5.1685 460 6.1471
6.0231 5.3933 480 6.1303
5.9395 5.6180 500 6.1241
5.8278 5.8427 520 6.1094
5.8774 6.0674 540 6.1078
5.8393 6.2921 560 6.1025
5.8534 6.5169 580 6.0983
5.9313 6.7416 600 6.1013
5.8947 6.9663 620 6.0989
5.8936 7.1910 640 6.0971
5.8275 7.4157 660 6.0950
5.822 7.6404 680 6.0899
5.8637 7.8652 700 6.0883
5.8951 8.0899 720 6.0958
5.8697 8.3146 740 6.0906
5.9076 8.5393 760 6.0889
5.8149 8.7640 780 6.0894
5.7888 8.9888 800 6.0916
5.8096 9.2135 820 6.0938
5.8319 9.4382 840 6.0857
5.8508 9.6629 860 6.0901
5.8517 9.8876 880 6.0848

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Safetensors
Model size
17.1M params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for SystemAdmin123/test-repo

Finetuned
(2)
this model