news-summarizer-t5

This model is a fine-tuned version of google-t5/t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6177
  • Model Preparation Time: 0.0049
  • Rouge1: 19.8849
  • Rouge2: 17.9939
  • Rougel: 19.5328
  • Rougelsum: 19.5918

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Rouge1 Rouge2 Rougel Rougelsum
0.8689 1.0 251 0.6581 0.0049 18.8745 16.2314 18.1991 18.3287
0.6629 2.0 502 0.6385 0.0049 19.3705 17.1277 18.8685 18.9594
0.6114 3.0 753 0.6294 0.0049 19.3951 17.2113 18.9315 18.9848
0.571 4.0 1004 0.6197 0.0049 19.8684 17.8234 19.4646 19.5401
0.5451 5.0 1255 0.6193 0.0049 19.8981 17.9851 19.5083 19.5177
0.5194 6.0 1506 0.6203 0.0049 19.8675 17.9521 19.5434 19.6046
0.4894 7.0 1757 0.6166 0.0049 19.8622 17.9616 19.4791 19.5669
0.4872 8.0 2008 0.6177 0.0049 19.8849 17.9939 19.5328 19.5918

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
15
Safetensors
Model size
60.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for SurAyush/news-summarizer-t5

Base model

google-t5/t5-small
Finetuned
(1793)
this model
Quantizations
1 model