news-summarizer-t5
This model is a fine-tuned version of google-t5/t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6177
- Model Preparation Time: 0.0049
- Rouge1: 19.8849
- Rouge2: 17.9939
- Rougel: 19.5328
- Rougelsum: 19.5918
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|---|
0.8689 | 1.0 | 251 | 0.6581 | 0.0049 | 18.8745 | 16.2314 | 18.1991 | 18.3287 |
0.6629 | 2.0 | 502 | 0.6385 | 0.0049 | 19.3705 | 17.1277 | 18.8685 | 18.9594 |
0.6114 | 3.0 | 753 | 0.6294 | 0.0049 | 19.3951 | 17.2113 | 18.9315 | 18.9848 |
0.571 | 4.0 | 1004 | 0.6197 | 0.0049 | 19.8684 | 17.8234 | 19.4646 | 19.5401 |
0.5451 | 5.0 | 1255 | 0.6193 | 0.0049 | 19.8981 | 17.9851 | 19.5083 | 19.5177 |
0.5194 | 6.0 | 1506 | 0.6203 | 0.0049 | 19.8675 | 17.9521 | 19.5434 | 19.6046 |
0.4894 | 7.0 | 1757 | 0.6166 | 0.0049 | 19.8622 | 17.9616 | 19.4791 | 19.5669 |
0.4872 | 8.0 | 2008 | 0.6177 | 0.0049 | 19.8849 | 17.9939 | 19.5328 | 19.5918 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support