brain-zhang's picture
Upload README.md with huggingface_hub
63e3f98 verified
metadata
license: apache-2.0
tags:
  - StepLaw
  - causal-lm
language:
  - en
library_name: transformers
pipeline_tag: text-generation
model-index:
  - name: >-
      step2v2_0618_h1280_ffnh9048_numh10_numl13_lr1.38E-03_bs512_ti47683_mlr1.00E-05
    results: []

Wandb Model Name: step2v2_0618_h1280_ffnh9048_numh10_numl13_lr1.38E-03_bs512_ti47683_mlr1.00E-05

This model is part of the StepLaw-N_536M-D_49.0B collection.

Model Specifications

Architecture

  • Hidden size (H): 1280
  • Feed-forward network size (FFN): 9048
  • Attention heads: 10
  • Layers: 13
  • Parameter count: 536M

Training Parameters

  • Learning rate (lr): 1.38E-03
  • Batch size (bs): 1048576
  • Training iterations: 47683
  • Training tokens (D): 50.0B

Model Description

StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 1.38E-03 and batch size 1048576 for 47683 iterations, using a total of 50.0B training tokens.

Usage Example

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "StepLaw/StepLaw-N_536M-D_49.0B-LR1.38E-03-BS1048576"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)

# Generate text
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))