metadata
license: apache-2.0
tags:
- StepLaw
- causal-lm
language:
- en
library_name: transformers
pipeline_tag: text-generation
model-index:
- name: >-
step2v2_0618_h1024_ffnh9552_numh16_numl8_lr4.883e-04_bs64_ti610351_mlr1.00e-05
results: []
Wandb Model Name: step2v2_0618_h1024_ffnh9552_numh16_numl8_lr4.883e-04_bs64_ti610351_mlr1.00e-05
This model is part of the StepLaw-N_268M-D_79.0B collection.
Model Specifications
Architecture
- Hidden size (H): 1024
- Feed-forward network size (FFN): 9552
- Attention heads: 16
- Layers: 8
- Parameter count: 268M
Training Parameters
- Learning rate (lr): 4.883e-04
- Batch size (bs): 131072
- Training iterations: 610351
- Training tokens (D): 80.0B
Model Description
StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 4.883e-04 and batch size 131072 for 610351 iterations, using a total of 80.0B training tokens.
Usage Example
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "StepLaw/StepLaw-N_268M-D_79.0B-LR4.883e-04-BS131072"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
# Generate text
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))