Wandb Model Name: step2v2_0618_h960_ffnh9368_numh15_numl7_lr9.77E-04_bs1024_ti9536_mlr1.00E-05

This model is part of the StepLaw-N_214M-D_19.0B collection.

Model Specifications

Architecture

  • Hidden size (H): 960
  • Feed-forward network size (FFN): 9368
  • Attention heads: 15
  • Layers: 7
  • Parameter count: 214M

Training Parameters

  • Learning rate (lr): 9.77E-04
  • Batch size (bs): 2097152
  • Training iterations: 9536
  • Training tokens (D): 20.0B

Model Description

StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 9.77E-04 and batch size 2097152 for 9536 iterations, using a total of 20.0B training tokens.

Usage Example

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "StepLaw/StepLaw-N_214M-D_19.0B-LR9.77E-04-BS2097152"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)

# Generate text
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
4
Safetensors
Model size
341M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including StepLaw/StepLaw-N_214M-D_19.0B-LR9.77E-04-BS2097152