Wandb Model Name: step2v2_0618_h960_ffnh9368_numh15_numl7_lr6.905e-04_bs2048_ti2713_mlr1.00e-05

This model is part of the StepLaw-N_214M-D_11.0B collection.

Model Specifications

Architecture

  • Hidden size (H): 960
  • Feed-forward network size (FFN): 9368
  • Attention heads: 15
  • Layers: 7
  • Parameter count: 214MM

Training Parameters

  • Learning rate (lr): 6.905e-04
  • Batch size (bs): 2048
  • Training iterations: 2713
  • Training tokens (D): 11.4B

Model Description

StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 6.905e-04 and batch size 2048 for 2713 iterations, using a total of 11.4B training tokens.

Usage Example

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "StepLaw/StepLaw-N_214M-D_11.0B-LR6.905e-04-BS4194304"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)

# Generate text
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```## Part of StepLaw Project

StepLaw is an initiative to provide thousands of models for optimal hyperparameter research.
Visit [StepLaw Project](https://step-law.github.io/) for more information.
Downloads last month
4
Safetensors
Model size
341M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including StepLaw/StepLaw-N_214M-D_11.0B-LR6.905e-04-BS4194304