File size: 3,216 Bytes
6d0406f
6f924ca
6d0406f
 
 
 
 
 
 
 
 
 
f28f67a
6d0406f
f28f67a
6d0406f
f28f67a
6d0406f
f28f67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d0406f
f28f67a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
![Header](https://raw.githubusercontent.com/Aayan-Mishra/Images/refs/heads/main/Athena.png)

# Athena-1: Lightweight and Powerful Instruction-Following Model

Athena-1 is a fine-tuned, instruction-following large language model derived from [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct). Designed to balance efficiency and performance, Athena 7B provides powerful text-generation capabilities, making it suitable for a variety of real-world applications, including conversational AI, content creation, and structured data processing.

---

## Key Features

### ๐Ÿš€ Enhanced Performance
- **Instruction Following**: Fine-tuned for excellent adherence to user prompts and instructions.
- **Coding and Mathematics**: Proficient in solving coding problems and mathematical reasoning.
- **Lightweight**: At 7.62 billion parameters, Athena-1-7B offers powerful performance while maintaining efficiency.

### ๐Ÿ“– Long-Context Understanding
- **Context Length**: Supports up to **128K tokens**, ensuring accurate handling of large documents or conversations.
- **Token Generation**: Can generate up to **8K tokens** of output.

### ๐ŸŒ Multilingual Support
- Supports **29+ languages**, including:
  - English, Chinese, French, Spanish, Portuguese, German, Italian, Russian
  - Japanese, Korean, Vietnamese, Thai, Arabic, and more.

### ๐Ÿ“Š Structured Data & Outputs
- **Structured Data Interpretation**: Understands and processes structured formats like tables and JSON.
- **Structured Output Generation**: Generates well-formatted outputs, including JSON and other structured formats.

---

## Model Details

- **Base Model**: [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)
- **Architecture**: Transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias.
- **Parameters**: 7.62B total (6.53B non-embedding).
- **Layers**: 28
- **Attention Heads**: 28 for Q, 4 for KV.
- **Context Length**: Up to **131,072 tokens**.

---

## Applications

Athena-1 is designed for a broad range of use cases:
- **Conversational AI**: Create natural, human-like chatbot experiences.
- **Code Generation**: Generate, debug, or explain code snippets.
- **Mathematical Problem Solving**: Assist with complex calculations and reasoning.
- **Document Processing**: Summarize or analyze large documents.
- **Multilingual Applications**: Support for diverse languages for translation and global use cases.
- **Structured Data**: Process and generate structured data, including tables and JSON.

---

## Quickstart

Hereโ€™s how you can use Athena 7B for quick text generation:

```python
# Use a pipeline as a high-level helper
from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="Spestly/Athena-1-7B")
pipe(messages)

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Spestly/Athena-1-7B")
model = AutoModelForCausalLM.from_pretrained("Spestly/Athena-1-7B")
```