Spestly commited on
Commit
f28f67a
·
verified ·
1 Parent(s): 6f924ca

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -6
README.md CHANGED
@@ -10,13 +10,76 @@ license: apache-2.0
10
  language:
11
  - en
12
  ---
 
13
 
14
- # Uploaded model
15
 
16
- - **Developed by:** Spestly
17
- - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct-bnb-4bit
19
 
20
- This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
10
  language:
11
  - en
12
  ---
13
+ ![Header](https://raw.githubusercontent.com/Aayan-Mishra/Images/refs/heads/main/Athena.png)
14
 
15
+ # Athena-1: Lightweight and Powerful Instruction-Following Model
16
 
17
+ Athena-1 is a fine-tuned, instruction-following large language model derived from [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct). Designed to balance efficiency and performance, Athena 7B provides powerful text-generation capabilities, making it suitable for a variety of real-world applications, including conversational AI, content creation, and structured data processing.
 
 
18
 
19
+ ---
20
+
21
+ ## Key Features
22
+
23
+ ### 🚀 Enhanced Performance
24
+ - **Instruction Following**: Fine-tuned for excellent adherence to user prompts and instructions.
25
+ - **Coding and Mathematics**: Proficient in solving coding problems and mathematical reasoning.
26
+ - **Lightweight**: At 7.62 billion parameters, Athena-1-7B offers powerful performance while maintaining efficiency.
27
+
28
+ ### 📖 Long-Context Understanding
29
+ - **Context Length**: Supports up to **128K tokens**, ensuring accurate handling of large documents or conversations.
30
+ - **Token Generation**: Can generate up to **8K tokens** of output.
31
+
32
+ ### 🌍 Multilingual Support
33
+ - Supports **29+ languages**, including:
34
+ - English, Chinese, French, Spanish, Portuguese, German, Italian, Russian
35
+ - Japanese, Korean, Vietnamese, Thai, Arabic, and more.
36
+
37
+ ### 📊 Structured Data & Outputs
38
+ - **Structured Data Interpretation**: Understands and processes structured formats like tables and JSON.
39
+ - **Structured Output Generation**: Generates well-formatted outputs, including JSON and other structured formats.
40
+
41
+ ---
42
+
43
+ ## Model Details
44
+
45
+ - **Base Model**: [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)
46
+ - **Architecture**: Transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias.
47
+ - **Parameters**: 7.62B total (6.53B non-embedding).
48
+ - **Layers**: 28
49
+ - **Attention Heads**: 28 for Q, 4 for KV.
50
+ - **Context Length**: Up to **131,072 tokens**.
51
+
52
+ ---
53
+
54
+ ## Applications
55
+
56
+ Athena-1 is designed for a broad range of use cases:
57
+ - **Conversational AI**: Create natural, human-like chatbot experiences.
58
+ - **Code Generation**: Generate, debug, or explain code snippets.
59
+ - **Mathematical Problem Solving**: Assist with complex calculations and reasoning.
60
+ - **Document Processing**: Summarize or analyze large documents.
61
+ - **Multilingual Applications**: Support for diverse languages for translation and global use cases.
62
+ - **Structured Data**: Process and generate structured data, including tables and JSON.
63
+
64
+ ---
65
+
66
+ ## Quickstart
67
+
68
+ Here’s how you can use Athena 7B for quick text generation:
69
+
70
+ ```python
71
+ # Use a pipeline as a high-level helper
72
+ from transformers import pipeline
73
+
74
+ messages = [
75
+ {"role": "user", "content": "Who are you?"},
76
+ ]
77
+ pipe = pipeline("text-generation", model="Spestly/Athena-1-7B")
78
+ pipe(messages)
79
+
80
+ # Load model directly
81
+ from transformers import AutoTokenizer, AutoModelForCausalLM
82
 
83
+ tokenizer = AutoTokenizer.from_pretrained("Spestly/Athena-1-7B")
84
+ model = AutoModelForCausalLM.from_pretrained("Spestly/Athena-1-7B")
85
+ ```