Model Card for CoMP-MM-1B
This is an LMM that supports native image resolution inputs, composed of CoMP-SigLIP and Qwen2.5.
Model Sources
- Repository: https://github.com/SliMM-X/CoMP-MM
- Paper: https://arxiv.org/abs/2503.18931
- Project Page: https://slimm-x.github.io/comp
How to Get Started with the Model
Install the github repo, and use the code below to get started with the model.
# this is very similar to qwen2-vl
from slimm.model.processor import SliMMQwen2VLProcessor
from slimm.model.slimm import SliMMForConditionalGeneration
from slimm.model.utils_vl import process_vision_info
model_path = "SliMM-X/CoMP-MM-1B"
model = SliMMForConditionalGeneration.from_pretrained(
model_path, torch_dtype="auto", device_map="cuda"
)
processor = SliMMQwen2VLProcessor.from_pretrained(model_path)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://slimm-x.github.io/comp/figs/teaser.png",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Citation
BibTeX:
@article{comp2025,
title={CoMP: Continual Multimodal Pre-training for Vision Foundation Models},
author={Chen, Yitong and Meng, Lingchen and Peng, Wujian and Wu, Zuxuan and Jiang, Yu-Gang},
year={2025},
journal={arXiv preprint arXiv:2503.18931},
}
- Downloads last month
- 72
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The HF Inference API does not support image-text-to-text models for slimm
library.