Skywork-UniPic2
Collection
Building Kontext Model with Online RL for Unified Multimodal Model
β’
8 items
β’
Updated
β’
7
UniPic2-SD3.5M-Kontext-2B is a post-trained **T2I ** model built on the SD3.5-Medium. It focuses on text-to-image generation and image editing, delivering strong quality with a fast generation speed. It runs smoothly on a single 16 GB consumer GPU.
UniPic2-SD3.5M-Kontext-2B w/o GRPO achieves competitive results across a variety of vision-language tasks:
Task | Score |
---|---|
π§ GenEval | 0.83 |
πΌοΈ DPG-Bench | 83.7 |
βοΈ GEditBench-EN | 6.31 |
π§ͺ ImgEdit-Bench | 3.95 |
git clone https://github.com/SkyworkAI/UniPic
cd UniPic-2
conda create -n unipic python=3.10
conda activate unipic
pip install -r requirements.txt
import torch
from PIL import Image
from unipicv2.pipeline_stable_diffusion_3_kontext import StableDiffusion3KontextPipeline
from unipicv2.transformer_sd3_kontext import SD3Transformer2DKontextModel
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL, BitsAndBytesConfig
from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
# Load model components
pretrained_model_name_or_path = "/mnt/datasets_vlm/chris/hf_ckpt/Unipic2-t2i"
# int4 is recommended for inference:lower VRAM with no quality loss {"int4", "fp16"}
quant = "int4"
# BitsAndBytes config
bnb4 = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
bnb8 = BitsAndBytesConfig(load_in_8bit=True)
if quant == "int4":
transformer = SD3Transformer2DKontextModel.from_pretrained(
pretrained_model_name_or_path, subfolder="transformer",
quantization_config=bnb4, device_map="auto", low_cpu_mem_usage=True
).cuda()
text_qconf = bnb8
vae_dtype = torch.float16
else: # fp16
transformer = SD3Transformer2DKontextModel.from_pretrained(
pretrained_model_name_or_path, subfolder="transformer",
torch_dtype=torch.float16, device_map="auto", low_cpu_mem_usage=True
).cuda()
text_qconf = None
vae_dtype = torch.float16
vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path, subfolder="vae",
torch_dtype=vae_dtype, device_map="auto", low_cpu_mem_usage=True
)
# Load text encoders
text_encoder = CLIPTextModelWithProjection.from_pretrained(
pretrained_model_name_or_path, subfolder="text_encoder",
quantization_config=text_qconf, torch_dtype=None, device_map="auto", low_cpu_mem_usage=True
)
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(
pretrained_model_name_or_path, subfolder="text_encoder_2",
quantization_config=text_qconf, torch_dtype=None, device_map="auto", low_cpu_mem_usage=True
)
tokenizer_2 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2")
text_encoder_3 = T5EncoderModel.from_pretrained(
pretrained_model_name_or_path, subfolder="text_encoder_3",
quantization_config=text_qconf, torch_dtype=None, device_map="auto", low_cpu_mem_usage=True
)
tokenizer_3 = T5TokenizerFast.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_3")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
pretrained_model_name_or_path, subfolder="scheduler"
)
# Create pipeline
pipeline = StableDiffusion3KontextPipeline(
transformer=transformer, vae=vae,
text_encoder=text_encoder, tokenizer=tokenizer,
text_encoder_2=text_encoder_2, tokenizer_2=tokenizer_2,
text_encoder_3=text_encoder_3, tokenizer_3=tokenizer_3,
scheduler=scheduler)
# Generate image
image = pipeline(
prompt='a pig with wings and a top hat flying over a happy futuristic scifi city',
negative_prompt='',
height=512, width=384,
num_inference_steps=50,
guidance_scale=3.5,
generator=torch.Generator(device=transformer.device).manual_seed(42)
).images[0]
image.save("text2image.png")
print(f"Image saved to text2image.png (quant={quant})")
# Load and preprocess image
def fix_longer_edge(x, image_size, factor=32):
w, h = x.size
if w >= h:
target_w = image_size
target_h = h * (target_w / w)
target_h = round(target_h / factor) * factor
else:
target_h = image_size
target_w = w * (target_h / h)
target_w = round(target_w / factor) * factor
x = x.resize(size=(target_w, target_h))
return x
image = Image.open("text2image.png")
image = fix_longer_edge(image, image_size=512)
negative_prompt = "blurry, low quality, low resolution, distorted, deformed, broken content, missing parts, damaged details, artifacts, glitch, noise, pixelated, grainy, compression artifacts, bad composition, wrong proportion, incomplete editing, unfinished, unedited areas."
# Edit image
edited_image = pipeline(
image=image,
prompt="remove the pig's hat",
negative_prompt=negative_prompt,
height=image.height, width=image.width,
num_inference_steps=50,
guidance_scale=3.5,
generator=torch.Generator(device=transformer.device).manual_seed(42)
).images[0]
edited_image.save("edited_img.png")
print(f"Edited Image saved to edited_img.png (quant={quant})")
This model is released under the MIT License.
If you use Skywork-UniPic in your research, please cite:
@misc{wang2025skyworkunipicunifiedautoregressive,
title={Skywork UniPic: Unified Autoregressive Modeling for Visual Understanding and Generation},
author={Peiyu Wang and Yi Peng and Yimeng Gan and Liang Hu and Tianyidan Xie and Xiaokun Wang and Yichen Wei and Chuanxin Tang and Bo Zhu and Changshi Li and Hongyang Wei and Eric Li and Xuchen Song and Yang Liu and Yahui Zhou},
year={2025},
eprint={2508.03320},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2508.03320},
}